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a  b  s  t  r  a  c  t

A  new  formulation  is  proposed  to examine  the propagation  of the  pressure  disturbance  induced  by  the
injection  of  a  time-variable  mass  of  a weakly  compressible  shear  thinning  fluid  in a  porous  domain  with
generalized  geometry  (plane,  radial,  or spherical).  Medium  heterogeneity  along  the  flow  direction  is
conceptualized  as  a monotonic  power-law  permeability  variation.  The  resulting  nonlinear  differential
problem  admits  a similarity  solution  in  dimensionless  form  which  provides  the  velocity  of the  pres-
sure  front  and  describes  the  pressure  field  within  the domain  as  a function  of  geometry,  fluid  flow
behavior  index,  injection  rate,  and  exponent  of  the  permeability  variation.  The  problem  has  a  closed-
form  solution  for an instantaneous  injection,  generalizing  earlier  results  for  constant  permeability.  A
parameter-dependent  upper  bound  to  the  permeability  increase  in  the  flow  direction  needs  to  be  imposed
for the expression  of  the  front  velocity  to retain  its  physical  meaning.  An  example  application  to the  radial
injection  of a remediation  agent  in a subsurface  environment  demonstrates  the  impact  of  permeability
spatial  variations  and  of  their  interplay  with  uncertainties  in flow  behavior  index  on  model  predictions.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The mechanics of non-Newtonian fluid flow in porous media
has attracted substantial attention in the past and present, as many
fluids injected in natural or man-made porous formations exhibit
a complex rheological nature (Savins, 1969; Barenblatt et al., 1990;
Shenoy, 1995; Chhabra et al., 2001; Sochi, 2010). The range of
applications spans extraction of crude oils, underground oil dis-
placement, well drilling, aquifer contamination, soil remediation.
The specific nature of the fluid involved governs the choice of a con-
stitutive equation describing the relationship between stress and
strain; often the fluid rheological behavior is properly described
by a Cross or Carreau–Yasuda model with multiple parameters,
but can be approximated in a certain range of shear rates by
the simpler two-parameter Ostwald–DeWaele model. At the other
end of the spectrum, flow in porous media of viscoelastic liquids
or suspensions of long molecular particles entails the adoption
of more complex models such as Rivlin–Ericksen second grade
(Jordan and Puri, 2003) or dipolar fluids (Puri and Jordan, 2006,
and references therein). Adoption of a rheological model at the fluid
mechanics scale results in a relationship between pressure gradient
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and specific flux at the Darcy scale. For power-law fluids, this
macroscopic motion equation is particularly simple, and reduces
to a nonlinear modification of Darcy’s law, often derived using
a capillary representation of the porous medium (Cristopher and
Middleman, 1965; Teeuw and Hesselink, 1980; Pascal and Pascal,
1985; Pearson and Tardy, 2002). Coupling the motion equation
with mass balance yields a transient nonlinear advection–diffusion
equation, whose solution gives the pressure in the domain of inter-
est. A particular subclass of analytical solutions to these nonlinear
problems is derivable upon adopting a self-similar transforma-
tion (Barenblatt, 1996), which yields elegant closed-form results
for infinite porous domains subject to different initial and bound-
ary conditions. For free-surface, gravity-driven flow in porous
media, examples of this approach are Pascal and Pascal (1993),
Bataller (2008), Di Federico et al., 2012a,b. For confined flow,
Pascal (1991a,b) studied the pressure perturbations generated in
an infinite homogeneous porous domain by an instantaneous mass
injection in plane or axisymmetric geometry. Their solution was
later extended to spherical geometry by Di Federico and Ciriello
(2012), while performing a sensitivity analysis on the results.

The objective of this study is to extend the solution developed
by Di Federico and Ciriello (2012) in two respects: (i) allowing for
a time variable fluid injection as opposed to an instantaneous one,
the former being more suitable in many instances to represent e.g.
the continuous release of a displacing fluid, environmental con-
taminant or remediation agent in the subsurface; (ii) to take into
account the combined effect of domain heterogeneity by allowing
the porous medium permeability to monotonically vary with the
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Fig. 1. Domain schematic for plane (d = 1), cylindrical (d = 2), and spherical (d = 3)
geometry.

distance from the injection point; such an assumption may  rep-
resent flow in a domain in which previous injection or pumping
has gradually modified the permeability field around the release
point in a systematic way. The insight gained may  be employed in
numerical models of non-Newtonian fluid flow at different scales.

The exposition is organized as follows. The mathematical prob-
lem is formulated in Section 2 for a generalized geometry, and
solved in Section 3 in self-similar form. Section 4 discusses the
limits existing on problem parameters by virtue of formulated
assumptions, and their relationship. An application involving the
migration of a remediation agent in a subsurface domain is pre-
sented in Section 5. Concluding remarks are formulated in Section 6.

2. Problem formulation

A non-Newtonian fluid is injected into an infinite porous
domain, initially saturated by another ambient fluid. The propaga-
tion of pressure within the domain is taken to be a one-dimensional
transient process in plane (d = 1), cylindrical (d = 2) and spherical
(d = 3) geometry (Fig. 1). The mass of intruding fluid, injected in the
domain origin starting at time t = 0, increases with time as m0t ˛,
with m0 (dimensions [MT −˛]) and  ̨ being constants;  ̨ = 0 cor-
responds to the instantaneous release of a given mass,  ̨ = 1 to a
constant flux. The domain is described geometrically by its thick-
ness h for d = 1, 2, and by the surface of the injection zone, equal
to ıh2 for d = 1 (ı being the aspect ratio of the rectangular injection
area), 2�hrw for d = 2, and 4�r2

w for d = 3, with rw being the radius
of the injecting well for d = 2, 3.

The permeability of the porous domain varies in the direction
of propagation according to

k (x) = k0

(
r

r∗

)ˇ

, (1)

k0 being the reference permeability at the length scale r* and  ̌ a real
number (Mathunjwa and Hogg, 2007); for  ̌ = 0 the porous domain
has homogeneous permeability k0, while for  ̌ > 0 and  ̌ < 0 the per-
meability respectively increases or decreases with distance from
the injection point. A permeability decreasing with distance from
the injection well was considered by Altunkaynak and Sen (2011),
while for viscous gravity currents in channels of given shape,
the channel width was allowed to vary with distance from the
source according to a relation akin to (1), to represent widening or
narrowing channels (Takagi and Huppert, 2008). The injected fluid
is described by the rheological power-law model, given for simple

shear flow by � = �̃ �̇
∣∣�̇∣∣n−1

, in which � is the shear stress, �̇ the
shear rate, �̃ the fluid consistency index and n the flow behav-
ior index (a positive real number); n < 1 represents shear thinning,
n > 1 shear thickening behavior. The equation of motion for the
fluid is a nonlinear modification of Darcy’s law, verified experimen-
tally by Cristopher and Middleman (1965) and Yilmaz et al. (2009).
Flow and continuity equation read respectively (gravity effects are
neglected in spherical geometry):
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where r is the spatial coordinate, t the time, v the Darcy velocity, p
the pressure, c0 = cf + cp the total compressibility coefficient, cf the
fluid compressibility coefficient, cp the porous medium compress-
ibility coefficient, � the porosity, k the permeability coefficient, and
�ef the effective viscosity, given by (Shenoy, 1995)
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= 1
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where Ct = Ct(n) denotes a tortuosity factor for which different
expressions are available; in the following, the expression pro-

posed by Pascal and Pascal (1985), i.e. Ct =
(

25/12
)(n+1)/2

, will be
adopted.

Substituting Eq. (2) in Eq. (3) one obtains:
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with initial condition (p0 is the ambient pressure)

p(r, t = 0) = p0, (6)

while conservation of mass m(t) released into the domain requires

m(t) = m0t˛ = ωh3−d	� · c0

rN (t)∫
0

(p − p0) · rd−1 dr, (7)

where 	 is fluid density. In Eq. (7), the factor ω takes the values ı
for plane, 2� for radial, and 4� for spherical geometry (d = 1, 2, 3
respectively) and rN(t) denotes the advancing compression front.
Under the validity of (3), i.e. moderately compressible fluids (for
large compressibility coefficients, additional terms arise, see Pascal
and Pascal, 1990), it has been demonstrated earlier for a variety
of boundary conditions and a homogeneous domain (Pascal and
Pascal, 1985; Di Federico and Ciriello, 2012; Ciriello and Di Federico,
2012) that for shear thinning fluids, the front has finite velocity
u(t) = �drN/dt,  while for Newtonian and shear thickening fluids, no
pressure front exists, and rN(t)→ ∞ for any t. Hence for n < 1 the
appropriate boundary conditions are

p(rN(t), t) = p0, (8)(
∂p

∂r

)
(r = rN(t)) = 0, (9)

rN(0) = 0. (10)
Dimensionless variables are then defined as follows:
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