[Journal of Alloys and Compounds 750 \(2018\) 164](https://doi.org/10.1016/j.jallcom.2018.02.318)-[170](https://doi.org/10.1016/j.jallcom.2018.02.318)

Contents lists available at ScienceDirect

Journal of Alloys and Compounds

journal homepage: <http://www.elsevier.com/locate/jalcom>

Fabrication of $L1_0$ -FeNi phase by sputtering with rapid thermal annealing

Takayuki Tashiro ^a, Masaki Mizuguchi ^{a, *}, Takayuki Kojima ^a, Tomoyuki Koganezawa ^b, Masato Kotsugi ^b, Takumi Ohtsuki ^b, Kazuhisa Sato ^a, Toyohiko Konno ^a, Koki Takanashi ^a

^a Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Sendai, 980-8577, Japan ^b Japan Synchrotron Radiation Research Institute (JASRI/SPring-8), 1-1-1 Koto, Hyogo, 679-5198, Japan

article info

Article history: Received 9 May 2017 Received in revised form 24 February 2018 Accepted 26 February 2018

Keywords: $L1_0$ -FeNi Ordered alloys Magnetic materials Magnetic anisotropy Sputtering

ABSTRACT

FeNi films were directly deposited on MgO(001) substrates by co-sputtering and rapid thermal annealing (RTA). The formation of the $L1_0$ phase was investigated for films with different thicknesses and different annealing conditions by grazing incidence X-ray diffraction. For the FeNi films with a thickness of 5 nm, superlattice 001 and 110 peaks were observed after annealing at a heating rate of 50 \degree C/s, which indicates that three variants of $L1_0$ grains were formed in the films. The maximum long-range order parameter, which corresponded to a volume-averaged parameter, was approximately 0.11. For the FeNi films with a thickness of 30 nm, a superlattice 110 peak was only observed after annealing at a heating rate of 50 \degree C/s, and the formation of 001 textured grains was clarified. Magnetic properties also changed depending on the FeNi film structures. The formation mechanism of $L1_0$ -FeNi is discussed based on the strain caused by RTA in the FeNi films.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

For a perpendicular recording media and motor magnets, materials with large uniaxial magnetic anisotropy $(K_{\mathfrak{u}})$ are necessary and investigated for several materials $[1-4]$ $[1-4]$ $[1-4]$ $[1-4]$. L1₀-ordered alloys, such as $L1_0$ -FePt and $L1_0$ -FePd, are known to reveal large K_{11} [[5](#page--1-0)–[7](#page--1-0)]. Therefore, these alloys are promising for high-density perpendicular recording media or high-maximum-energy magnets. Although many $L1_0$ -ordered alloys include a noble element, leading to a high cost for industrial products, $L1_0$ -FeNi includes only low-cost elements and exhibits large saturation magnetization (M_s ; 1200–1300 emu/cc) and $K_{\rm u}$ (1.3 × 10⁷ erg/cc), excellent corrosion resistance, and high Curie temperature $[8-11]$ $[8-11]$ $[8-11]$. In other words, this material is a "noble-element-free and large K_u material". From previous studies $[12-14]$ $[12-14]$ $[12-14]$ $[12-14]$ involving $L1_0$ -FeNi film experiments, it was found that K_u increased with the order parameter (S) and was induced by the spin-orbit coupling of Fe 3d electrons in the $L1_0$ structure. However, the formation of the $L1_0$ -FeNi phase is quite difficult with conventional methods such as annealing. Because the orderdisorder transition temperature (\sim 320 \degree C) is too low compared to tween the $L1_0$ and A1 phases is also small $[15-18]$ $[15-18]$ $[15-18]$ $[15-18]$ $[15-18]$, therefore, the ordering process hardly occurs. In nature, $L1_0$ -FeNi is found in ironmeteorites $[10,11,18-20]$ $[10,11,18-20]$ $[10,11,18-20]$ $[10,11,18-20]$; experimentally it was obtained using special techniques such as neutron irradiation in the applied magnetic field [\[8,9\]](#page--1-0), and the films were fabricated by molecular beam epitaxy (MBE) on a buffer layer with good lattice match to $L1_0$ -FeNi [[12,14](#page--1-0),[21](#page--1-0)–[24](#page--1-0)]. Recently, the formation of an $L1_0$ -FeNi alloy was also reported when using layer-by-layer sputtering deposition [[25](#page--1-0)] or various alloying methods $[26-29]$ $[26-29]$ $[26-29]$; however, the volume fraction of $L1_0$ -FeNi was small. In this paper, we fabricated $L1_0$ -FeNi films on MgO(001) sub-

the melting point (>1400 °C), the formation-energy difference be-

strates by conventional sputtering and rapid thermal annealing (RTA). In certain cases, the RTA method is effective in enhancing the $L1_0$ ordering process; [001] textured $L1_0$ -FePt and CoPt films were easily obtained on polycrystalline substrates $[30-33]$ $[30-33]$ $[30-33]$ $[30-33]$. Here, the relation between annealing conditions and structural and magnetic properties for the FeNi films including $L1_0$ -FeNi phase were systematically investigated.

2. Experimental procedures

All FeNi films were prepared by co-sputtering of Fe (RF) and Ni (DC) directly onto clean MgO(001) substrates at room temperature

^{*} Corresponding author. E-mail address: mizuguchi@imr.tohoku.ac.jp (M. Mizuguchi).

using an ultra-high vacuum (base pressure: $< 3 \times 10^{-6}$ Pa) magnetron sputtering system [\[34\]](#page--1-0). Sputtering powers of the Fe and Ni targets were 31 and 11 W, respectively. The Ar gas pressure during sputtering was 0.2 Pa, and the co-deposition rate was 0.015 nm/s. The total thicknesses of the co-deposited FeNi films were 5, 30, 50, and 100 nm. The composition of FeNi was estimated to be $Fe_{47}Ni_{53}$ (at.%) from electron probe microscopy analysis. After deposition, the FeNi films were annealed by using an RTA system consisting of an infrared light source and a vacuum chamber (starting pressure: $< 5 \times 10^{-4}$ Pa). The annealing conditions, such as an annealing temperature (250–400 \degree C) and annealing time $(5-20 h)$, were used. To study the effect of heating rate on the formation of $L1_0$ -FeNi phase, it was changed from 0.1 °C/s to 50 °C/s. The RTA method involves a rapid heating rate (50 \degree C/s) followed by holding the temperature constant. The typical heating rate was 0.1 \degree C/s and followed by holding the temperature constant for thermal annealing (TA). For structural characterization, grazing incidence X-ray diffraction (GI-XRD) measurements were carried out with an in-plane scan (φ -2 θ , where φ is the rotation angle of the sample, and 2θ is the detector position) using synchrotron radiation at the synchrotron radiation facility of SPring-8 (BL46XU). The incident angle of the X-ray beam was 0.28° with the film surface, and samples were enclosed in a He-gas-exchange chamber to reduce the background due to scattering from air. To use anomalous dispersion, X-ray energy was chosen near the Fe-K absorption edge (about 7.110 keV) because the superlattice peak intensity should be enhanced at the Fe-K absorption edge compared to that at offresonance energies. The S was evaluated with the following Equation:

$$
S = \sqrt{\frac{\left(I_{\text{sup}}/I_{\text{fund}}\right)^{\text{exp}}}{\left(I_{\text{sup}}/I_{\text{fund}}\right)_{S=1}^{\text{cal}}}},\tag{1}
$$

where I_{sup} and I_{fund} are integrated intensities in the GI-XRD measurement for the superlattice and fundamental peaks, respectively. The superscript of "exp" means the experimentally observed value estimated by peak-fitting using a pseudo-Voigt function, and "cal" means the theoretical value with the perfect order $(S = 1)$ calculated with the following Equation:

$$
I = |F|^2 \frac{1}{\sin 2\theta},\tag{2}
$$

where *F* is the structure factor, and $1/\text{sin}2\theta$ is the Lorentz factor. $|F|^2$ is described with the following Equation:

$$
|F|^{2} = 4\left\{\left\{(f_{0Fe} + f'_{Fe}(\varepsilon))e^{-M_{Fe}} \pm (f_{0Ni} + f'_{Ni}(\varepsilon))e^{-M_{Ni}}\right\}^{2} + \left\{f'_{Fe}(\varepsilon)e^{-M_{Fe}} \pm f'_{Ni}(\varepsilon)e^{-M_{Ni}}\right\}^{2}\right\},
$$
\n(3)

where f_{0F} and f_{0Ni} are the normal atomic scattering factors of Fe and Ni [[35](#page--1-0)], and e^{-M} _{Fe} and e^{-M} _{Ni} are the Debye-Waller factors [\[36\]](#page--1-0) of Fe and Ni, respectively. In this study, X-ray energy was adjusted to 7.11 keV (Fe-K adsorption edge); therefore, the anomalous dispersion effect was taking place, and f and f'' are the real and imaginary parts of anomalous scattering factors, respectively. Our measurements required neither adsorption correction nor polarization correction, because in-plane geometry and incident X-rays with linearly polarized light were used. In addition, high-resolution transmission electron microscopy (HRTEM) observation was used for the microstructural analysis of FeNi films. Cross-sectional images were observed with electron beam//MgO[100] direction. Magnetization curves were measured by a superconducting quantum interference device (SQUID) at room temperature. Magnetic fields up to ± 20 kOe were applied along the parallel and perpendicular directions to the plane.

3. Results

3.1. Annealing time dependence for FeNi films (5 nm)

Fig. 1(a) shows GI-XRD profiles for an FeNi film (5 nm) annealed at 350 °C at a heating rate of 50 °C/s and held for 20 h. The incident directions of the X-ray beam are related to the scattering vector (K) along the MgO [100] or [110], the results of which are shown with broken and solid lines, respectively. In the profile for the K/\sqrt{MgO} [110] direction, superlattice 110 and fundamental 220 peaks were observed. This orientation relationship indicates that the [001] axis (i.e., c-axis) is perpendicular to the MgO(001) substrate. On the other hand, in the profile with the $K/|\text{MgO}|100$ direction, superlattice 001 and fundamental 200 peaks were observed. With inplane XRD measurement, observation of diffraction from (100) planes is possible; however, for the $L1_0$ structure, a 100 peak should not be observed due to its structural symmetry [\[5\]](#page--1-0). Thus, this peak was indicated as 001 in the profile instead of the 100 peak. This orientation relationship indicates that the [001] axis (i.e., c-axis) for $L1_0$ -FeNi is parallel to the MgO(001) substrate. Therefore, both superlattice diffraction peaks confirm the formation of two variants of the $L1_0$ -FeNi films, that is, the c-axis is perpendicular and parallel to the film plane. In general, an $L1_0$ -ordered alloy with high tetragonality is easily formed because RTA induces tensile strain to the

Fig. 1. (a) GI-XRD profiles for FeNi film (5 nm) on MgO(001) substrates annealed at 350 °C at a heating rate of 50 °C/s for 5-20 h. (b) Profiles in a narrow range around FeNi(001) and (200) peaks. (c) Profiles in a narrow range around FeNi(110) and (220) peaks.

Download English Version:

<https://daneshyari.com/en/article/7991783>

Download Persian Version:

<https://daneshyari.com/article/7991783>

[Daneshyari.com](https://daneshyari.com)