Accepted Manuscript

Critical behavior and magnetocaloric effect in monoclinic Cr5Te8

Xiao Zhang, Tianlin Yu, Qinyu Xue, Ming Lei, Rongzhen Jiao

PII: S0925-8388(18)31195-2

DOI: 10.1016/j.jallcom.2018.03.318

Reference: JALCOM 45548

To appear in: Journal of Alloys and Compounds

Received Date: 12 January 2017
Revised Date: 24 March 2018
Accepted Date: 26 March 2018

Please cite this article as: X. Zhang, T. Yu, Q. Xue, M. Lei, R. Jiao, Critical behavior and magnetocaloric effect in monoclinic Cr₅Te₈, *Journal of Alloys and Compounds* (2018), doi: 10.1016/j.jallcom.2018.03.318.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Critical behavior and magnetocaloric effect in monoclinic Cr_5Te_8

Xiao Zhang, Tianlin Yu, Qinyu Xue, Ming Lei*, Rongzhen Jiao*

State Key Laboratory of Information Photonics and Optical Communications & School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China.

Abstract

The critical behavior and magnetocaloric effects of the monoclinic Cr_5Te_8 single crystal have been studied by using magnetization measurements. Experimental results show that the paramagnetic (PM) to ferromagnetic (FM) phase transition is a second-order phase transition at $T_c = 222$ K. The detailed critical behavior analysis indicates that the values of critical exponents β , γ , and δ determined by the modified Arrott plots, the Kouvel-Fisher method as well as the critical isotherm analysis agree well with each other and fulfill the Widom scaling law. The critical exponents are close to those expected for the three-dimensional Ising model and the ferromagnetic interaction is at the boundary between long-range type and short-range one. In addition, the magnetocaloric property of monoclinic Cr_5Te_8 is consistent with the analysis of critical behavior.

Keywords:

Transition metal alloys and compounds, Crystal growth, Magentisation, Magnetocaloric, Magnetic measurements

1. Introduction

The binary chromium chalcogenides have been intensively investigated because of their rich magnetotransport and optical properties [1–8]. It has been predicted that some of them would be excellent candidates for half-metallic ferromagnets, which are key ingredients in high-performance spin-tronic devices [1, 2]. Among binary chromium chalcogenides, sulfides and selenides are usually antiferromagnetic metals or semiconductors [8–10], but tellurides are ferromagnetic (FM) metals [11–15]. These compounds (Cr_{1-x} Te,

Download English Version:

https://daneshyari.com/en/article/7991940

Download Persian Version:

https://daneshyari.com/article/7991940

<u>Daneshyari.com</u>