Accepted Manuscript

Nanostructured TiO_2 thin films sensitized by CeO_2 as an inexpensive photoanode for enhanced photoactivity of water oxidation

Dipika Sharma, B.R. Mehta

PII: S0925-8388(18)31098-3

DOI: 10.1016/j.jallcom.2018.03.228

Reference: JALCOM 45458

To appear in: Journal of Alloys and Compounds

Received Date: 29 December 2017

Revised Date: 16 March 2018

Accepted Date: 17 March 2018

Please cite this article as: D. Sharma, B.R. Mehta, Nanostructured TiO₂ thin films sensitized by CeO₂ as an inexpensive photoanode for enhanced photoactivity of water oxidation, *Journal of Alloys and Compounds* (2018), doi: 10.1016/j.jallcom.2018.03.228.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Nanostructured TiO₂ thin films sensitized by CeO₂ as an Inexpensive Photoanode for enhanced photoactivity of water oxidation

Dipika Sharma and B. R. Mehta*

Thin Film Laboratory, Department of Physics, Indian Institute of Technology, New Delhi-110016, INDIA *Email:- dipika.sharma286@gmail.com

Abstract:

Nanostructured CeO₂/TiO₂ bilayer thin films were fabricated by sequential deposition of CeO₂ on TiO₂ with varying the thickness of CeO₂ using sol–gel spin-coating method. All samples were characterized by XRD, SEM, and UV-Visible absorption spectroscopy with an inspiration to use them as photoanode in photoelectrochemical splitting of water. The CeO₂/TiO₂ bilayer with the optimized thickness of CeO₂ and TiO₂ showed enhanced photoelectrochemical response of 2.1 mA cm⁻² at 0.95V/Ag/AgCl as compared to pristine CeO₂ and TiO₂. The improved photocurrent density of CeO₂/TiO₂ bilayer probably due to rapid transfer of charge carriers or electrical gradient at CeO₂/TiO₂ interface. This scalable and cost effective work with stable PEC performance of CeO₂/TiO₂ also shows the potential for realistic PEC applications.

Keywords: CeO₂/TiO₂, Bilayer, Photoelectrochemical response, Cost effective, Spin Coating.

Introduction:

Solar hydrogen generation by solar water splitting in PEC cells is the most forward-looking method in the recent time on account of hydrogen being widely accepted as clean energy carrier [1-2]. This solar-to-hydrogen conversion process initiated from the first PEC water splitting response of titanium dioxide (TiO_2) by Honda and Fujishima in 1972 [3]. Nowadays, TiO_2 is well known semiconductor as photoanode due to its suitable band positions, abundant, non-toxic, and stability. However, previous studies on TiO_2 have found that its wide band gap of 3.2 eV absorbs only UV part of the solar spectrum and high recombination rate of photogenerated electron–hole pairs due to its short diffusion length of charge carriers are main drawbacks that limited the photocatalytic activity and visible light response of TiO_2 [4-5]. In this regards, extensive surveys have been carried out on refining the photoelectrochemical response of TiO_2 . Among the numerous techniques coupling of TiO_2 with other low band gap semiconductor with matching band edges positions will be potential method to improve the utilization of visible light and facilitation of photo-generated electrons

Download English Version:

https://daneshyari.com/en/article/7992022

Download Persian Version:

https://daneshyari.com/article/7992022

Daneshyari.com