Contents lists available at ScienceDirect

Journal of Alloys and Compounds

journal homepage: http://www.elsevier.com/locate/jalcom

Synthesis of magnetite nanoparticles from iron ore tailings using a novel reduction-precipitation method

霐

ALLOYS AND COMPOUNDS

Esmaeel Darezereshki, Ahmad khodadadi Darban^{*}, Mahmoud Abdollahy, Ahmad jamshidi

Department of Mineral Processing, Tarbiat Modares University, Tehran, Iran

ARTICLE INFO

Article history Received 20 January 2018 Received in revised form 10 March 2018 Accepted 21 March 2018 Available online 23 March 2018

Keywords: Oxide materials Chemical synthesis Magnetisation Transmission electron microscopy X-ray diffraction

ABSTRACT

Magnetite nanoparticles successfully produced from a pregnant leach solution (PLS) of iron ore tailings via a simple reduction-precipitation method using Na2S2O3·5H2O reducing agent while the ratio of $[Fe^{3+}]$ to $[S_2O_3^{2-}]$ were 3 and 2 in the presence and absence of nitrogen gas respectively. The produced nanoparticles were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning and transmission electron microscopy (SEM, TEM), Brunauer-Emmett-Teller (BET), and vibrating sample magnetometry (VSM). The achieved XRD and FTIR results confirmed the presence of Fe₃O₄ nanoparticles while SEM and TEM images displayed that the formed nanoparticles were spherical with an average diameter of 19 ± 3 nm. The average surface area and the pore volume of produced nanoparticles were calculated to be $64.04 \text{ m}^2 \text{ g}^{-1}$ and $0.079 \text{ cm}^3/\text{g}$, respectively using the BET method. By performing VSM analysis and estimation of the low magnetic remanence (M_r) and coercive field (H_c) , it was concluded that the produced nanoparticles are highly ferromagnetic at the room temperature.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Each year, about 5 million tons of tailings containing hematite and goethite are dumped from concentrator plants in Gol-Gohar mine complex of Sirjan, Iran. At present, about 30 million tons of the dry tailings are present in the complex with an average iron content higher than 25%. By 2025, this amount will be increased to 80 million tons thus it is essential to find some alternatives uses for this significant source of minerals.

One approach is to solubilize the iron ions in a pregnant leach solution (PLS) to produce magnetite (Fe₃O₄) nanoparticles. Magnetite nanoparticles can be used in a number of applications including waste water treatment [1], magnetic resonance imaging [2], manufacture of catalyst [3], synthesis of pigments, and magnetic storage [4]. To prepare PLS, HCl is recommended as the main acid leaching agent in the literature [5-11]. However, using highly concentrated HCl may boost the formation of impurities such as CaCl₂ and MgCl₂ in the PLS [10]. Therefore, using other alternative combined lixiviants (hybrid lixiviant) containing an appropriate concentration of H⁺ and Cl⁻ may optimize the tailings leachability while improving the leaching productivity. Table 1 represents most

Corresponding author. E-mail address: akdarban@modares.ac.ir (A. khodadadi Darban). of the successful methods that produced magnetite nanoparticles from waste and acid mine drainage (AMD) [5–14].

We herein describe a novel and simple reduction-precipitation method for Fe₃O₄ nanoparticles preparation from PLS of iron ore tailings leached by H₂SO₄(5 M)/NaCl (2 M) reagents. It is assumed that H₂SO₄/NaCl hybrid lixiviant decreases Ca²⁺ ions impurity in PLS due to the precipitation of gypsum. Before increasing the pH of PLS by the addition of ammonia, the Fe³⁺ was reduced using sodium thiosulfate pentahydrate (Na₂S₂O₃·5H₂O) in the stoichiometric amount. The synthesized Fe₃O₄ nanoparticles were characterized by X-ray diffraction (XRD), Fourier transform infrared spectrum (FTIR), inductively coupled plasma-optical emission spectroscopy (ICP-OES), scanning and transmission electron microscopy (SEM, TEM), vibrating sample magnetometry (VSM) and the Brunauere-Emmette-Teller (BET) method.

2. Materials and methods

2.1. Materials

The iron ore tailings obtained from Gol-Gohar magnetite tailings dump in Sirjan, Iran. The elemental analysis of the tailings comprised 43.47% Fe, 7.99% Si, 9.07% Ca, 3.8% Mg, and 2.4% Al. We used 5 M H₂SO₄ and 2 M NaCl for the leaching process while it is assumed that NaCl will improve the H⁺ activity by the addition of a

Table 1

Various synthesis methods of magnetite nanoparticles from iron tailings and AMD.

Studying procedure	Ref.
$4Fe_2O_3(\text{Iron ore tailings} = Fe_2O_3 + SiO_2 + Al_2O_3)) + Fe \xrightarrow{\text{milling for 2 h}} 3Fe_3O_4$	[5]
$Fe_3O_4 + 8HCl + metallic Fe mixed in the tailings \xrightarrow{95^\circ C for 4-5} h 2FeCl_3 + FeCl_2 + 4H_2O$ $ureal(CH_4N_5O)at 95^\circ C$	
$2FeCl_3 + FeCl_2 \xrightarrow{\text{Her}(e1_4 + e_2) + Ce_3 + e_3} Fe_3O_4$	[6]
iron ore tailings $\rightarrow Fe^{3+} + Fe^{2+}$	[0]
$Fe^{3+} + Fe^{2+} \xrightarrow{1202} Fe^{3+}$	
$Fe^{3+heated} \xrightarrow{to \ 50} C/pH adjusted \ to \ 52} Fe(OH)_{3(S)} \xrightarrow{calcined} Fe_2O_3$	
$\operatorname{Fe_2O_3} \xrightarrow{\operatorname{HCl}} \operatorname{Fecl}_{3(aq)}$	
$2FeCl_{3(aq)} + FeSO_{4(aq)} \xrightarrow{\downarrow NaOH(drop \ slowly)} Fe_3O_4$	
The tailing sample $\frac{\text{HCl at } 150^{\circ} \text{C for } 5 - 6h_{FeCl_3} + SiO_2 + Al_2O_3}{4FeCl_3 + 3NaBH_{4(acid \ ascorbic)} + 9H_2O \rightarrow 4Fe_{(metallic \ iron)} \downarrow + 3NaH_2BO_3 + 12HCl + 6H_2 \uparrow 2FeCl_2 + Fe_{(metallic \ iron)} \rightarrow 3FeCl_2$	[7]
$2F_{a}C_{b} + F_{a}C_{b} = NH_{4}OH(pH = 10) \downarrow$ $F_{a} = 0$	
$\frac{2recr_3 + recr_2}{HClat 80 \circ C \text{ for 1 h}} = 0$	[8]
iron ore tailings _(iron, silica and alumina) $\xrightarrow{Hard correction}$ $\stackrel{Hard correction}{\to}$ $Hard co$	
$FeCl_{3(aq)} + 3NH_4OH \rightarrow Fe(OH)_3 + 3NH_4CI \xrightarrow{\text{where}} For A h (reductive reacting) \xrightarrow{\text{where}} Fe(OH)_3$	
$Fe(OH)_3 + C \xrightarrow{OOO-1500 \text{ cloir 4 In(reductive - rotating)}} Fe_3O_4$	
iron ore tailings _(iron, silica and alumina) $\xrightarrow{HCI at 80^{\circ}C \text{ for } 1h}_{FeCl_{3(aq)}}$ FeCl _{3(aq)}	[9]
$FeCl_{3(aq)} + 3NH_4OH \rightarrow Fe(OH)_3 + 3NH_4Cl \xrightarrow{Washed with 1.0\% HCl and distilled} water Fe(OH)_3$	
$2Fe(OH)_3 + FeCl_2 \xrightarrow{in 50\%HCl}{2Fe^{3+}} + Fe^{2+}$	
$2Fe^{3+} + Fe^{2+} \xrightarrow{\text{NaOH (1.5M) at } 70^{\circ}\text{C in } N_2 \text{ gas}} Fe_3O_4$	
Crushing of the magnetite iron ore _{(less than 149μm)} $\frac{\text{HCl}(0.66\text{g ore/ml HCl}) \text{ at } 100^{\circ}\text{C for2h}}{\text{Fe}^{3+} + \text{Fe}^{2+} + \text{other ions}}$}	[10]
$Fe^{3+} + Fe^{2+} + other ions \xrightarrow{H_2O_2} Fe^{3+}$	
$Fe^{2\tau} + NaBH_4 \rightarrow 2Fe^{2\tau} + Fe^{2\tau}$	
$2Fe^{2+} + Fe^{2+} \longrightarrow Fe_3O_4$	[11]
$IOT_{(iron ore tailings)} \xrightarrow{Hcl at 50 C (w/w-1)} Fe^{3+} + Fe^{2+} + other ions$	[]
$Fe^{3+} + Fe^{2+} + other ions \xrightarrow{H_2O_2} at 60°C \longrightarrow Fe^{3+} + other ions$	
$Fe^{3+} + NH_4OH \rightarrow 2Fe(OH)_3 \xrightarrow{HCI(1:1)} Fe^{3+}$	
$2Fe^{3+} + FeSO_4 \cdot 7H_2O + GO_{(graphen oxide 3gr/l)} \xrightarrow{Na_4OH} Suspansion \xrightarrow{160^{\circ}C \text{ for } 12h} Fe_3O_4$	
$FeSO_4 \cdot 7H_2O + FeS_2 \xrightarrow{400^{\circ}C \text{ for 10min}} 3Fe_3O_4 + 10SO_{2(g)} + 56H_2O_{(g)}$	[12]
acid mine drainage (AMD) $\frac{Oxidation(pH=2.3)}{Fe(OH)_{a}}$	[13]
$Fe(OH)_3 + HCI \rightarrow FeCl_3$	
$2FeCl_3 + FeSO_4 \cdot 7H_2O_{(Merk)} \xrightarrow{NaOH \& NH_4OH(pH = 11.5)} Fe_3O_{4(51\% maghemite 26\% Magnetite 22\% Hematite 1\% other forms of iron oxide)}$	
Acid mine dminare (AMD) $H_2O_2(pH = 3.5 - 4\text{ with the addition of 4N sodium hydroxide})_{Fa(O(1))}$	[14]
$\frac{2Fe(OH)_2 + 3H_2SO_4 \rightarrow Fe_2(SO_4)_2 + 6H_2O}{Fe(OH)_3}$	
$2Fe_{2}(SO_{4})_{2} + Fe_{2}SO_{4} \cdot 7H_{2}O_{4}O_{4}O_{4}O_{4}O_{4}O_{4}O_{4}O_{4$	
$5M H_2 SO_4 / 2M NaCl at 85°C for 2h_2, 5M H_2 SO_4 / 2M NaCl at 85°C for 2h_2 / 2M NACL AU NA$	This study
crushing of the iron ore tailings _(D₈₀=150μm) $\xrightarrow{2^{-47}}$ $Fe^{5^{+}}$ + other ions	
$Fe^{3+} + Na_2S_2O_3 \cdot 5H_2O_{(reducing agent)} \xrightarrow{ Fe^{-+}/S_2O_3^{} = 3} 2Fe^{3+} + Fe^{2+}$	
$2Fe^{3+} + Fe^{2+} \overset{\text{NH}_4\text{OH}(2.5\text{M}, \text{pH} = 9.5)\text{in the presence of } N_2 \text{ gas at } 25^{\circ}\text{C}(Fe^{3+})_2 Fe^{2+}(\text{OH})_8 \text{ or } Fe_3(\text{OH})_{8(s)}$	
$\operatorname{Fe}_{3}(\operatorname{OH})_{8(\varsigma)} \xrightarrow{85^{\circ}C - 100^{\circ}C} \operatorname{Fe}_{3}O_{4} + 4H_{2}O$	

necessary amount of Cl⁻. Sodium thiosulfate pentahydrate (99.5%, Na₂S₂O₃·5H₂O), ammonium hydroxide (25–30%, NH₄OH), deionized water, and ethanol (CH₃CH₂OH, 99.93%) were used in the synthesis of nanoparticles.

2.2. Leaching process

Prior to the acid leaching, the samples were ball milled to d_{80} 75 µm and immersed in a glass reactor (1000 ml) in a water bath at 85 °C with a constant stirring condition (700 rpm). After 120 min, the leachate was filtered and the solution was chemically analyzed by ion chromatography (Waters Company) and ICP-OES (Model 730-ES, Varian Company, USA). The specification of prepared PLS is

mentioned in Table 2.

2.3. Nanoparticles' preparation procedure

 $Na_2S_2O_3$ and NH_4OH were used to reduce the Fe^{3+} to Fe^{2+} and precipitate the PLS solution respectively. Thus, 5.3 ml of 1 M $Na_2S_2O_3 \cdot 5H_2O$ was mixed with 25 ml of the PLS solution to maintain the $Fe^{3+}/Fe^{2+} = 2$. The initial color of the mixture was changed from yellow to violet and turned back to yellow after $Na_2S_2O_3$ was added to PLS. The solution thereafter was mechanically stirred at 700 rpm while the nitrogen gas was circulated into the flask at the room temperature (25 °C). Furthermore, 8 ml of 1 M $Na_2S_2O_3 \cdot 5H_2O$ was mixed with 25 ml of PLS solution in the absence of nitrogen gas Download English Version:

https://daneshyari.com/en/article/7992023

Download Persian Version:

https://daneshyari.com/article/7992023

Daneshyari.com