Accepted Manuscript

The hydrothermal synthesis of 3D hierarchical porous MoS₂ microspheres assembled by nanosheets with excellent gas sensing properties

Yajie Zhang, Wen Zeng, Yanqiong Li

PII: S0925-8388(18)31184-8

DOI: 10.1016/j.jallcom.2018.03.307

Reference: JALCOM 45537

To appear in: Journal of Alloys and Compounds

Received Date: 6 February 2018
Revised Date: 22 March 2018
Accepted Date: 24 March 2018

Please cite this article as: Y. Zhang, W. Zeng, Y. Li, The hydrothermal synthesis of 3D hierarchical porous MoS₂ microspheres assembled by nanosheets with excellent gas sensing properties, *Journal of Alloys and Compounds* (2018), doi: 10.1016/j.jallcom.2018.03.307.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIP

The hydrothermal synthesis of 3D hierarchical porous MoS₂ microspheres

assembled by nanosheets with excellent gas sensing properties

Yajie Zhang^a, Wen Zeng^{al}*, Yanqiong Li^b

College of Materials Science and Engineering, Chongqing University, Chongqing, China

b. School of Electronic and Electrical Engineering, Chongqing University of Arts and Sciences,

Chongqing 400030, China

Abstract: 3D hierarchical porous MoS₂ microspheres assembled by nanosheets were

successfully fabricated via a facile yet efficient hydrothermal process using an assistance of CTAB

as soft template which had significant effects on the final morphology of MoS₂ products. The

possible formation mechanism of the harvested porous MoS₂ microspheres were preliminarily

presented on the basis of the experimental results. Moreover, the gas sensing properties of the

samples were investigated. The hierarchical porous MoS₂ microspheres are found to exhibit an

excellent gas response capability, good response-recovery properties, reproducibility and

selectivity, which provides further evidence that assistance CTAB is critical for governing the

morphology and properties of the MoS₂.

Key words: Porous structures; MoS₂; Hydrothermal; Gas sensors; Formation mechanism

1. Introduction

Hydrogen (H₂) is considered as one of the most promising and green energy source to solve

future energy requirements due to its abundance, renewable, easy synthesis, and non-polluting

nature [1-3]. Up to now, hydrogen have extensive applications in various important fields such as,

fuel cells for civil transportation, power generators, automobiles and rockets for space vehicles [4,

¹ Corresponding author E-mail: wenzeng@cqu.edu.cn

(W.Z.) Tel: +86-23-65102466

Download English Version:

https://daneshyari.com/en/article/7992027

Download Persian Version:

https://daneshyari.com/article/7992027

<u>Daneshyari.com</u>