Accepted Manuscript

Combined effects of cooperative grain boundary sliding and migration and reinforced particles on crack growth in fine-grained Mg alloys

Tengwu He, Miaolin Feng

PII: S0925-8388(18)31207-6

DOI: 10.1016/j.jallcom.2018.03.330

Reference: JALCOM 45560

To appear in: Journal of Alloys and Compounds

Received Date: 13 December 2017

Revised Date: 5 March 2018
Accepted Date: 26 March 2018

Please cite this article as: T. He, M. Feng, Combined effects of cooperative grain boundary sliding and migration and reinforced particles on crack growth in fine-grained Mg alloys, *Journal of Alloys and Compounds* (2018), doi: 10.1016/j.jallcom.2018.03.330.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Combined effects of cooperative grain boundary sliding and migration and reinforced particles on crack growth in fine-grained Mg alloys

Tengwu He^a, Miaolin Feng^{a,*}

^aState Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China

Abstract A theoretical model is developed to describe the combined influences of cooperative grain boundary (GB) sliding and migration and reinforced particles on crack propagation in fine-grained Mg alloys. The numerical solutions of singular integral equations are derived on the basis of complex variable method of Muskhelishvili, the superposition principle of elasticity and distributed dislocation technique. The expressions of stress intensity factors (SIFs) near the right tip of basal crack are obtained and the energy release rate (ERR) characterizing the condition for crack growth is calculated. The influences of important parameters such as the location of cooperative GB sliding and migration, the size of reinforced particle and the misorientation angle of higher angle grain boundaries on the ERR are discussed in detail. The results show that the fracture toughness of fine-grained Mg alloys can be improved by cooperative GB sliding and migration and particle hardening and refining. There exists an optimum particle size that makes the fracture toughness of fine-grained Mg alloys best. Besides, the GB migration remarkably contributes to the fracture toughness of fine-grained Mg alloys and there is an optimum migration distance making the fracture toughness of fine-grained Mg alloys best.

Keywords: Grain boundary sliding; Grain boundary migration; basal crack; reinforced particle; fine-grained Mg alloys; energy release rate

 $^{^*}$ Corresponding author: mlfeng@sjtu.edu.cn; Tel: +862134204539; fax: +862134206334

Download English Version:

https://daneshyari.com/en/article/7992138

Download Persian Version:

https://daneshyari.com/article/7992138

<u>Daneshyari.com</u>