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a  b  s  t  r  a  c  t

We  present  a simplified  heart  model  with  the  aim of  introducing  a mechanical  point  of  view in  the
interpretation  of  the pressure–volume  loops.  In particular,  we  propose  a mechanical  description  of  muscle
contraction,  and  discuss  its implications  with  reference  to a specific  pressure–volume  loop  representative
of  a normal  human  patient.
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1. Introduction

The pressure–volume loops represent an assessment of the
overall mechanical activity of the heart. Here, we  present and dis-
cuss a mechanical point of view in the interpretation of the loops,
based on a muscle modeling which takes into account for muscle
contraction through the notion of active deformation. This point
of view considers kinematics – used to describe contractions – as
a primary notion in muscle modeling, and is opposite to the well
known approach based on active force: we assume that an uncon-
strained muscle under stimulus experiences a contraction, that we
model as a stress-free change of its length, called active deformation.
Thus, the active deformation describes how a muscular tissue short-
ens once stimulated and left free to contract; it follows that a muscle
exerts a force only if its contraction is hampered by some constraints
(as in isometric exercise, as example), while its actual length depends
on both the amount of stress it sustains, and on the level of activation.

We used this material model to study the mechanics of the left
ventricle following a top-down modeling approach (DiCarlo et al.,
2009; Evangelista et al., 2011). Here, we use the same material
model to present our point of view regarding the PV loops. Our
modeling defines a correspondence between each point of a PV
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loop and the underlying muscle contraction, and allows to view a
PV loop as determined by three main state variables: pressure, vol-
ume, and contraction. To better illustrate and discuss our point of
view, we use a specific sampling of pressure–volume pairs mea-
sured by Zhong et al. (2005) with reference to a normal human
patient.

2. Methods

Here, we  sum up the macroscopic model of muscle which
embodies the notion of contraction presented in Nardinocchi and
Teresi (2007) and DiCarlo et al. (2009).

We  model an isolated fibre of muscle tissue as a one-
dimensional continuum. It may  be visualized as a bar of length
ls, meant to represent the muscle fibre in its slack state, that is,
unloaded and with no activation. Moreover, we denote with lc the
contracted and unloaded length of the same fibre, and with l the
length that the fibre reveals to an in vivo observation (the visible
length). Here, we  limit our analysis to homogeneous deformations
and write:

l = εls, lc = εcls ⇒ l = εε−1
c lc. (2.1)

The elastic energy is then assumed to be a function of the ratio l/lc
between the visible and the rest state; thus, we define the elastic
deformation ϕ as follows:

ϕ = εε−1
c . (2.2)
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Fig. 1. Schematic of muscle contraction.

Fig. 1 shows the relationship represented by Eq. (2.1) through a
cartoon. Eq. (2.2) allows a peculiar reading: the deformation ε = l/ls
of the fibre is multiplicatively decomposable into an active defor-
mation εc = lc/ls, measuring the contraction and denoted in the
medical literature as unloaded shortening, and an elastic defor-
mation ϕ = l/lc, responsible for any variation in the elastic energy.
We have: εc < 1 upon activation; ϕ > 1 under tension; εc = ϕ = 1 at
the slack state. This approach is founded on a two-layer kinematic
(Rodriguez et al., 1994; DiCarlo and Quiligotti, 2002): the total
deformation ε lives at the visible layer, insofar it determines the
visible length of the specimen. The active deformation (for us, the
contraction) εc alters the length of the fibre but does not induce any
tension, so that lc corresponds to a ground state, that is, a state at
zero tension. Thus, the active deformation characterizes a hidden
layer as it takes up at a macroscopic level phenomena correspond-
ing to microscopic cellular processes; as example, in Cherubini
et al. (2008),  it is assumed that the microscopic mechanism of
excitation–contraction coupling governs the active deformation εc

of the muscle fibre, and a relation is postulated between εc and the
calcium concentration.

Finally, we assume as constitutive law �̂, relating the elastic
deformation ϕ to the tension �, the following relation:

� = �̂(ϕ) = Y�3(ϕ), �(ϕ) = 1
2

(ϕ2 − 1),  ϕ = ε

εc
= l

lc
, (2.3)

with Y the elastic stiffness and � the Green–Saint Venant strain
measure associated to the deformation ϕ. Eq. (2.3) comes from the
assumption of a quadratic energy in the strain � (here proposed in
a 1D context), a generalization of the well-known quadratic energy
describing the Green–Saint Venant materials.

The rather simple choice (2.3) for �̂ has been motivated by the
following desiderata: (i) a very compliant response for � � 0; (ii)
a quite stiffening response with increasing values of strain. These
properties, assumed at the fibre scale, must persist at the LV scale,
that is, the chamber must be very compliant at low pressure, and
very stiff at high pressure. Thus, the proposed law captures, at least
qualitatively, the passive response (when εc = 1), and the response
upon activation (when εc < 1) of cardiac muscle.

3. Results

The macroscopic model of LV we present here is a zero-
dimensional model that considers a spherical approximation of the
chamber: it is simple enough to enlighten the key ideas at the basis
of the modeling, yet capable to capture the important features of
the pumping function of the heart which are collected in the PV
loop. Moreover, it is rigorously extendible to the full fledged non-
linear 3D elasticity theory and the main mechanical relationships
we aim to discuss are not altered by our simplified geometry.

Let us consider a spherical surface, whose hoop fibres behave
as the one-dimensional fibre presented in the previous section; it

follows that the length of the fibres is directly related to the radius
r and the volume v of the sphere, and we may  write

ϕ = l

lc
= r

rc
=
( v

vc

)1/3
, εc = rc

rs
=
( vc

vs

)1/3
, (3.4)

with rc, vc , and rs, vs the pair radius, volume corresponding to the
contracted and the slack state, respectively. Using (3.4), the con-
stitutive relation (2.3) rewrites as a function relating the tension �
to the actual volume v of the chamber, its slack volume vs, and the
contraction state εc of the muscle

� = Y�3(ϕ) = Y

(
1
2

((
r

rc

)2
− 1

))3

= Y

(
1
2

((
v1/3

v1/3
s εc

)2

− 1

))3

. (3.5)

Finally, let us consider the balance equation: for h the constant wall
thickness of the surface, a handy relation between the mean ten-
sion � generated in the wall and the pressure p inside the spherical
chamber is the well known Laplace formula:

p = 2
�h

r
. (3.6)

Granted for (3.5), it is easy to re-write the balance equation (3.6) in
terms of pressure, volume and contraction state:

p = 2
Yh

r̂(v)

(
1
2

((
v1/3

v1/3
s εc

)2

− 1

))3

, r̂(v) =
(

3
4

v
�

)1/3
. (3.7)

Relation (3.7) represents the main result of our toy model of cardiac
contraction: it can be viewed as a state function f, relating pressure,
volume and contraction, with the stiffness Y acting as a parameter:

f (p, v, εc; Y) = 0. (3.8)

The function f can be solved with respect to each one of the
three variables (p, v, εc), and completely characterizes the pumping
action of the heart. Of course, the plainness of Eq. (3.7) is due to the
constitutive law (3.5), to the assumption on the hoop fibres which
give rise to the relation (3.4) between the elastic deformation and
the volume of the sphere, and to the easy form assumed by the bal-
ance Eq. (3.6). When the same material model is applied in more
refined contexts, Eq. (3.8) is substituted by a set of nonlinear PDEs
that cannot be solved explicitly (Evangelista et al., 2011). To frame
the relation (3.8) within the cardio-mechanics literature, it is worth
mentioning the notion of time-varying elastance E(t), introduced
by Suga in the late 60s to describe the pressure–volume relation-
ship during the entire cycle: denoted with vo a reference volume
corresponding to zero pressure, we  have

p(t) = E(t)(v(t) − vo). (3.9)

The idea underlying (3.9) is that of a state function linking three fun-
damental variables: for example, the knowledge of the time course
of elastance E(t) and volume v(t) during the cycle allows for the
prediction of the time course of pressure. The notion of elastance
has been a key concept for cardiac physiologists and cardiologists
since then; see Suga (1990) for review. It follows that the role of
(3.8) is analogous to that of (3.9) and of the other empirical formu-
las relating pressure and volume as in Lankhaar et al. (2009),  that is,
to subsume through macroscopic quantities the main features of PV
loops. Nevertheless, it replaces the notion of time-varying elastance
E(t) with that of time-varying contraction εc(t), thus expressing
through a physically based parameter the subtle notion of cham-
ber contraction. In the end, let us note that the assumption that the
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