
Mechanics Research Communications 38 (2011) 372– 377

Contents lists available at ScienceDirect

Mechanics  Research  Communications

jou rna l h om epa ge: www.elsev ier .com/ locate /mechrescom

Mechanics  and  thermodynamics  of  surface  growth  viewed  as  moving
discontinuities
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a  b  s  t  r  a  c  t

Surface  growth  is  presently  described  as the  motion  of  a moving  interface  of  vanishing  thickness,  phys-
ically  representing  the  generating  cells,  separating  a zone  not  yet  affected  by  growth  from  a  domain  in
which  growth  has  occurred.  The  jump  conditions  of  density,  velocity,  momentum,  energy,  and  entropy
over  the  moving  front  are  expressed  from  the  general  balance  laws  of  open  systems  in  both  physical  and
material  format.  The  writing  of  the  jump  of  the  internal  entropy  production  in material  format  allows
the  identification  of  a driving  force  for  surface  growth,  thermodynamically  conjugated  to  the  material
velocity  of  the  moving  front.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Growth (resp. atrophy) describes the physical processes by
which a material of solid body increases (resp. decreases) its size
by addition (resp. removal) of mass. A clear distinction is generally
made between growth per se, remodeling (change of properties),
and morphogenesis (shape changes), a classification suggested by
Taber (1995).  It is clear that those three aspects of biological evo-
lution are connected to each other. A further clear distinction or
rather classification is made between volumetric growth referring
to processes taking place in the bulk of the material, a situation
typical of many physiological or pathological processes, and sur-
face growth,  describing mechanisms tied to accretion of deposition
of mass at a surface. Recent works in the literature lend however,
Epstein (2010) such a distinction is not so marked at least from a
kinetic point of view, as volumetric and surface growth may  simply
be two facets of the same reality.

From the biological point of view, surface growth refers to mech-
anisms tied to accretion and deposition of mass occurring mostly in
hard tissues, and is an active mechanism in the formation of teeth,
seashells, horns, nails, or bones, see Thompson (1992).  As pointed
out in Skalak et al. (1997) who developed a kinematic viewpoint of
surface growth, the growth or atrophy of part of a biological body by
the accretion or resorption of biological tissue lying on the surface
of the body is a well established fact. Numerous biological tissues
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develop by surface growth, with situations that can be classified as
either growth surface (e.g. nails and horns) or moving growing sur-
face (e.g. seashells, antlers). An extensive review of surface growth
models has been exposed in the recent contribution, Ganghoffer
(2010).

The point of view advocated in this contribution is surface
growth occurring as the motion of an interface within a solid body,
across which the mechanical fields experience discontinuities in
relation to a flux of nutrients, leading to a production of mass in
the zone swept by the interface. Adopting a macroscopic view-
point, a typical example in mechanobiology is the propagation of
a thin transition zone called the growth plate in long bones, see
Carter and Beaupré (2001),  connecting the metaphyseal bone and
the epiphyseal bone (Fig. 1). This plate witnesses a competition
between proliferation of chondrocytes and the ossification process
(it is found in children and adolescents), and can be considered at
first sight as a singular surface moving in a stationary manner. It is
clear that this picture is a simplified view, as the real growth plate
has a finite thickness and is endowed with a complex microstruc-
ture.

Regarding notations, vectors and higher order tensors are
denoted using boldface symbols. The physical and material posi-
tions are respectively denoted X and x. The material and physical
gradients are written ∇R and ∇ respectively. The jump and average
operators over a surface of discontinuity S(t) are denoted respec-
tively [a]S := a+ − a− and ā:=1/2(a+ + a−), for any scalar or tensorial
quantity a; the quantities a+, a− are the limit of the otherwise
continuous quantity a on both sides of S(t). The unit normal to a
surface in the Lagrangian (resp. physical) configuration is denoted
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Fig. 1. Radiography of 12 year old child’s lower leg showing growth plates at lower
ends of tibia and fibula. The growth plate, also coined the chondro-osseous junction,
is a hyaline cartilage joining bone to cartilage.

N (resp. n). The volume and surface in the actual (resp. referential)
configuration are denoted ˝t, St (resp. ˝R, SR). The convention of
the summation of the repeated index in a monomial is adopted.

2. Kinematics of the growing interface and Hadamard
relations

The physical picture underlying the present vision of surface
growth is the following: a solid body is swept by an internal inter-
face delimiting a volume of the newly grown material from the
volume of the material not yet affected by growth (Fig. 2). The
moving front generates new material properties and a new den-
sity, resulting from a mass flux across the front, biologically due to
the transport of nutrients from the surrounding bulk. The moving
interface can be conceived from a biological perspective as a set of
generating cells in the vocabulary of Skalak et al. (1997).  This situa-
tion is representative of internal remodeling, a surface mechanism
occurring for instance in bone. The adaptive response of bones to
changes in load history is called bone remodeling, Wolff (1892),
with a classification as either internal or external remodeling,  Cowin
and Van Buskirk (1979).  External or surface remodeling results in
a change of the external shape of the overall bone structure, and
occurs by the resorption or deposition of bone material on the sur-
faces. To the contrary, internal remodeling refers to the resorption
or deposition of bone material only, accompanied by the removal
and densification of the architecture of cancellous bone, but not
change its overall shape.

The surface growth (generating cells) is moving to the left (Fig. 2)
from an initial surface S0 (at initial time); the position of the surface
at time � (denoted as S�) is such that it divides the total volume (at
time t) into a subregion already affected by growth (in the direction
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Fig. 2. Surface growth and geometrical domain. The (geometrical) velocity of the
moving surface is denoted C. The moving interface can be viewed (right picture) as
a  region with a vanishing thickness.

of the normal on Fig. 2) and a region not yet affected (in the direction
of vector C, giving the growth velocity). As the interface is a zone of
discontinuity of the fields (density, kinematic and static variables)
due to the mass flux it experiences, this is source of a kinematic
incompatibility, generating stresses.

As shall be exposed in forthcoming developments, the jump
conditions that prevail at the moving surface represent the sin-
gular part of the balance laws underlying volumetric growth. One
presently imagines that volumetric growth takes place in a narrow
zone of a finite thickness (Fig. 2). Adopting a macroscopic view-
point and in the limit of a very thin such layer, the fields then
experience discontinuities at physical positions swept by the front.
Volumetric growth may  continue to develop in the volume already
swept by the interface (or it may stop), but it shall nevertheless
not affect what specifically happens locally at the interface. A dis-
tinction between the two  separate cases of fixed growth surface
and moving growth surface has been considered in Skalak et al.
(1997);  we  shall however not distinguish between these two cases
in the present contribution, which will be treated under a common
umbrella.

The growth surface can in a general situation be conveniently
parameterized by convected curvilinear coordinates �1, �2, which
locates a given cell on this surface. The trajectory of any particle
on this surface can be generated by a third curvilinear coordinate
�3(t), function of time, such that the growth surface has a motion
described by an equation of the form

�3(t) = f (t) (2.1)

A one to one mapping is supposed to exist between the Cartesian
coordinates of any point on the moving surface and the curvilinear
coordinates,

xGi(t) = xi(�1, �2, �, t) ≡ xi(�1, �2, �3(t))

with � ≤ t a past instant in the first equality, describing the surface
made of the material points generated at a time t = �. Hence, the
material velocity can be written as

Ẋmi =
(

∂xi

∂t

)
�i

(2.2)

wherein the curvilinear coordinates are held fixed to follow the
same particle.

For a mobile interface separating two media, having a normal
velocity c = cNN, the normal to the propagating surface is defined
from the equation of the surface S(X,t) = 0, with X = X(�1,�1,t) the
coordinate of a material point constrained to lie on the surface.
Deriving the equation S(X,t) = 0 with respect to time shows the
surface equation has a zero convected derivative (derivative of S
following the vector field Ẋ = (∂X/∂t)�1,�2

), viz

ıS

ıt
= ∂S

∂X
.Ẋ +

(
∂S

∂t

)
X

= 0 (2.3)

Since the vector ∂S/∂X is orthogonal to the surface S, hence the
unit normal vector to S expresses as (this form will be made more
specific in the sequel, considering either the material or physical
space, with specific notation for the unit normal)

N = ∂S/∂X∥∥∂S/∂X
∥∥ (2.4)

Hence, the normal interface velocity C is given in Lagrangian
format in terms of its normal component CN := C . N, such that

CN = − 1∥∥grad S
∥∥

(
∂S

∂t

)
X

(2.5)



Download English Version:

https://daneshyari.com/en/article/799231

Download Persian Version:

https://daneshyari.com/article/799231

Daneshyari.com

https://daneshyari.com/en/article/799231
https://daneshyari.com/article/799231
https://daneshyari.com

