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a  b  s  t  r  a  c  t

The  buckling  of  higher-order  shear  beam-columns  is studied  in  the  light  of  enriched  continuum.  We
show  the  equivalence  between  the  enriched  kinematics  of  usual  higher-order  shear  beam  theories  with
the nonlocal  and  gradient  nature  of  the  associated  constitutive  law. These  equivalences  are  useful  for  a
hierarchical  classification  of  usual  beam  theories  comprising  Euler–Bernoulli  beam  theory,  Timoshenko
and third-order  shear  beam  theories.  A  consistent  variationnally  presentation  is  derived  for  all  generic
theories,  leading  to  meaningful  buckling  solutions.  It is  shown  that Timoshenko  or  some  other  higher-
order  shear  theories  can  be considered  as  nonlocal  or gradient  Euler–Bernoulli  theories.  The  buckling
problem  of a third-order  shear  beam-column  is analytically  studied  and  treated  in the  framework  of  gra-
dient elasticity  Timoshenko  theory.  Some  different  gradient  elasticity  Timoshenko  models  are  presented
at the  end  of  the  paper  with  available  buckling  solutions  for repetitive  structures  and  microstructured
beams.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Since the beginning of the XXIth century, there has been a
considerable interest in the modelling of small-scale structures
comprising micro and nanostructures. These small-scale structures
present some scale effects that can be captured using nonlocal
mechanics (Wang et al., 2010a).  Therefore, many recent researches
in theoretical mechanics have been focused on the development of
theoretical solutions of structural stability (and dynamics) prob-
lems, with some additional scale parameters introduced in the
nonlocal constitutive law. Some reference nonlocal solutions have
been published for beam, plate, shell structural models (see for
instance (Wang et al., 2010a)). In a certain sense, one could say
that the mechanics community has investigated the small-scale
world with specific constitutive laws generally issued of nonlocal
mechanics, including gradient or integral-based nonlocal models.
On the other hand, it has been also recently shown that some
generic structural models used for mechanical or civil engineering
problems belong to the class of nonlocal mechanics. Challamel and
Wang (2008) used a nonlocal mechanics model to highlight some
specific scale effects for a micro and nano-cantilever elastic struc-
tural case. This beam model has also been used at the macroscale
level for composite beams or sandwich elastic beams (see also
(Zhang et al., 2010) or (Challamel and Girhammar, 2011)). There-
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fore, nonlocality has a wide range of applications from small-scale
structures to large-scale structures, even if the source of nonlo-
cality is physically and inherently different. We  do not discuss
here the nonlocal inelasticity models (plasticity or damage) used
for macroscale or microscale structures in presence of softening
(see (Bažant and Cedolin, 2003) or more recently (Challamel et
al., 2010a)  or (Challamel, 2010)). In the present paper, we discuss
the buckling of higher-order shear beam-columns in the light of
enriched continuum, namely nonlocal and gradient mechanics. We
show the equivalence between the enriched kinematics of usual
higher-order beam theories with the nonlocal and gradient nature
of the associated constitutive law. These equivalences are useful
for a hierarchical classification of usual beam theories comprising
Euler–Bernoulli beam theory, Timoshenko and third-order shear
beam theories.

With respect to integral-based elasticity nonlocal model, Erin-
gen’s based nonlocal model (Eringen, 1983) has been shown
to be efficient to take into account scale effects at the beam
scale for most structural cases (see for instance Peddieson et al.
(2003) for the bending problem, or more recently Challamel and
Wang (2008).  Sudak (2003) obtained the buckling solution for
some Euler–Bernoulli beam problems including Eringen’s nonlocal
terms. These results have been extended to Timoshenko nonlocal
columns (see for instance (Wang et al., 2006); (Reddy, 2007)). Wang
et al. (2009) investigated the post-buckling problem of cantilevered
nano rods/tubes under an end concentrated load. Reddy (2010)
gave the general nonlinear formulation of higher-order beam mod-
els with Eringen’s constitutive law. Challamel and Wang (2010)
studied the lateral-torsional buckling problem of Eringen’s based
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nonlocal beams. Challamel et al. (2010b) studied the buckling of
elastic beams on nonlocal foundation, or the buckling of beam sys-
tems with nonlocal elastic connections (Challamel et al., in press).
Another family of enriched continuum is the so-called gradient
models where the constitutive law also depends on the gradients
of the state variables. The in-plane buckling of gradient elastic-
ity Euler–Bernoulli column has been studied by Papargyri-Beskou
et al. (2003).  Lam et al. (2003) also developed a gradient elasticity
Euler–Bernoulli beam and show the stiffening effect of small length
terms. Lazopoulos (2003) studied the post-buckling behaviour of
gradient elasticity columns. Park and Gao (2006) developed a mod-
ified couple stress theory for Euler–Bernoulli kinematics. Kong et al.
(2009) developed a general gradient elasticity theory including the
modified couple stress theory for the Euler–Bernoulli beam mod-
els. Ma  et al. (2008) extended the modified couple stress theory of
Park and Gao (2006) to Timoshenko beam models. These models
are included in the gradient elasticity Timoshenko beam models of
Wang et al. (2010b).

2. Euler–Bernoulli beam mechanics

The energy functional for the buckling of “local” Euler–Bernoulli
columns is given by:

U [w] =
∫ L

0

1
2
EIw′′2 − 1

2
Pw′2dx (1)

where L is the length of the column, P is the axial load, w is the
deflection, EI is the bending stiffness. The Euler–Bernoulli beam
mechanics is based on the one-dimensional constitutive law:

M = EI� with � = −w′′ (2)

where M is the bending moment, and � is the curvature. The sta-
tionarity of the energy functional ıU = 0 leads to the differential
equations:

EIw(4) + Pw′′ = 0 (3)

with the natural and essential boundary conditions:[
EIw′′ıw′]L

0
= 0 and

[
−(EIw′′′ + Pw′)ıw

]L
0

= 0 (4)

For instance, for the pinned-pinned case, the Euler buckling formu-
lae is simply:

P = PE with PE = EI
(
�

L

)2
(5)

3. Timoshenko beam mechanics

This part is devoted to the “local” Timoshenko theory that can be
understood as a nonlocal Euler–Bernoulli beam theory. In the hier-
archical classification, the Timoshenko model can be considered as
a superior model that includes the Euler–Bernoulli one when the
shear effect can be neglected. In presence of axial loads, Engesser
and Haringx’s type models have to be distinguished (see Bažant
and Cedolin (2003) for instance). A discussion about the hypere-
lastic formulation of generic Timoshenko models can be found in
Reissner (1982),  Bažant (2003),  Hodges et al. (2006) or Attard and
Hunt (2008).  The energy functional of Engesser-type Timoshenko
column is given by:

U[ , w] =
∫ L

0

1
2
EI ′2 + �GA

2
(w′ −  )2 − 1

2
Pw′2dx (6)

where   is the rotation, G is the shear modulus, A is the total area, �
is the so-called shear coefficient, a dimensionless factor. It should be
noted that asymptotic methods may  provide a more consistent way

to determine the shear stiffnesses without assuming shear correc-
tion factors or plane sections remain plane (Yu and Hodges, 2005).
The Timoshenko beam mechanics is based on the two-dimensional
constitutive law:(
M
V

)
=
(
EI 0
0 �GA

)  (
�̂
�

)
with

(
�̂
�

)
=
(

− ′

w′ −  

)
(7)

where M is the bending moment, V is the shear force, �̂ is the
pseudo-curvature and � is the shear strain. The stationarity of the
energy functional ıU = 0 leads in this case to:{

−�GA(w′′ −  ′) + Pw′′ = 0
EI ′′ + �GA(w′ −  ) = 0

(8)

with the natural and essential boundary conditions:[
EI ′ı 

]L
0

= 0 and
[
(−EI ′′ − Pw′)ıw

]L
0

= 0 (9)

The characteristic length lc can be introduced as:

lc =
√

EI

�GA
(10)

The system of differential equations is now written with such a
characteristic length as:{

−EI(w′′ −  ′) + Plc
2w′′ = 0

  − lc
2 ′′ = w′ (11)

The second equation shows that the rotation   is the nonlocal
spatial average variable of the slope angle w′:

  = w′ with w′ − lc
2w′ ′′ = w′ (12)

The Timoshenko theory is clearly a nonlocal Euler–Bernoulli
beam theory where the rotation   of the cross section is the
nonlocal spatial average variable of the slope angle w′. A simi-
lar conclusion could be anticipated from the paper of Falsone and
Settineri (2011) even if the nonlocal mechanics has not been explic-
itly used. Furthermore, Eq. (11) leads to the uncoupled differential
equation:

(EI − Pl2c ) ′′′ + P ′ = 0 or (EI − Pl2c )w(4) + Pw′′ = 0 (13)

leading to the well-known Engesser formulae for most boundary
conditions except for instance the fixed-pinned conditions (see
Plantema (1966),  Ziegler (1982) or Wang et al. (2005)):

PT = PE

1 + PE/�GA
= PE

1 + (PE/EI)l2c
(14)

For instance, for the pinned-pinned case, the Engesser formulae is
simplified in:

PT

PE
= 1

1 + �2(lc/L)
2

with PE = EI
(
�

L

)2
(15)

This is also the formula of the in-plane and out-of-plane buckling
problem of Euler–Bernoulli beam model with Eringen’s nonlocal
law (see for instance Challamel and Wang (2010)). In fact, the non-
local Euler–Bernoulli constitutive law is written as:

M − l2cM
′′ = EI� or equivalently M = EI� with � − l2c �

′′ = �

(16)

with � as the curvature (one can choose � = −w′ ′). This nonlocal
constitutive law can be also presented in an integral format using
the Green’s operator associated with this differential equation:

M(x) =
∫ L

0

G(x, y)�(y)dy (17)
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