Accepted Manuscript

Influence of welding parameters on the IMCs and the mechanical properties of Ti/Al butt joints welded by MIG/TIG double-sided arc welding-brazing

Yufeng Zhang, Jihua Huang, Zheng Ye, Zhi Cheng, Jian Yang, Shuhai Chen

PII: S0925-8388(18)30987-3

DOI: 10.1016/j.jallcom.2018.03.119

Reference: JALCOM 45349

To appear in: Journal of Alloys and Compounds

Received Date: 24 January 2017

Revised Date: 13 February 2018

Accepted Date: 9 March 2018

Please cite this article as: Y. Zhang, J. Huang, Z. Ye, Z. Cheng, J. Yang, S. Chen, Influence of welding parameters on the IMCs and the mechanical properties of Ti/Al butt joints welded by MIG/TIG double-sided arc welding-brazing, *Journal of Alloys and Compounds* (2018), doi: 10.1016/j.jallcom.2018.03.119.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Influence of welding parameters on the IMCs and the mechanical properties of Ti/Al

butt joints welded by MIG/TIG double-sided arc welding-brazing

Yufeng Zhang, Jihua Huang*, Zheng Ye, Zhi Cheng, Jian Yang, Shuhai Chen

School of Material Science and Engineering, University of Science and Technology,

Beijing 100083, PR China

Abstract

Sound welding-brazing butt joints of TiAl6V4 and 5A06 with excellent front and

back appearance were obtained by MIG/TIG double-sided arc (DSA) welding-brazing.

The relationships between the main welding parameters such as welding speed, TIG

welding current and TIG position, the microstructure of the intermetallic compounds

(IMCs) and the mechanical properties of Ti/Al butt joints were investigated.

Experimental results revealed that the morphology, composition and thickness of

Ti-Al IMCs depended on the welding heat input and the heat distribution. With

increasing welding heat input and heat concentration, the thickness of the IMCs layers

increased, the morphology changed from lamellar to serrated, and the phase

composition changed from TiAl₃ to TiAl (adjacent to Ti6Al4V) and TiAl₃ (adjacent to

the weld). Moreover, the relationship between the structure of the Ti-Al IMCs layers

and the tensile strength of the joints without reinforcement was discussed further.

Some joints achieved a high bonding strength of 240.3 MPa because of serrated IMCs

* Corresponding author. Tel.: +86 01062334859

E-mail address: jhhuang62@sina.com (Jihua Huang)

Download English Version:

https://daneshyari.com/en/article/7992486

Download Persian Version:

https://daneshyari.com/article/7992486

<u>Daneshyari.com</u>