Accepted Manuscript

Structural and fluorescence properties of ${\rm Ho}^{3+}/{\rm Yb}^{3+}$ doped germanosilicate glasses tailored by ${\rm Lu}_2{\rm O}_3$

Wenqian Cao, Feifei Huang, Renguang Ye, Muzhi Cai, Ruoshan Lei, Junjie Zhang, Shiqing Xu, XiangHua Zhang

PII: S0925-8388(18)30822-3

DOI: 10.1016/j.jallcom.2018.02.325

Reference: JALCOM 45201

To appear in: Journal of Alloys and Compounds

Received Date: 19 December 2017
Revised Date: 26 February 2018
Accepted Date: 27 February 2018

Please cite this article as: W. Cao, F. Huang, R. Ye, M. Cai, R. Lei, J. Zhang, S. Xu, X. Zhang, Structural and fluorescence properties of Ho³⁺/Yb³⁺ doped germanosilicate glasses tailored by Lu₂O₃, *Journal of Alloys and Compounds* (2018), doi: 10.1016/j.jallcom.2018.02.325.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Structural and fluorescence properties of Ho³⁺/Yb³⁺ doped germanosilicate glasses tailored by Lu₂O₃

Wenqian Cao^1 , Feifei Huang 1* , Renguang Ye^{12} , Muzhi Cai^{12} , Ruoshan Lei^1 , Junjie Zhang 1 , Shiqing Xu^{1*} and XiangHua Zhang 2

- 1. College of Materials Science and Engineering, China Jiliang University, Hangzhou, 310018, China
- 2. Laboratoire Verres & Céramiques, UMR CNRS 6226, Université de Rennes 1, Campus Beaulieu,

35042 Rennes Cedex, France

* Corresponding author. huangfeifei@cjlu.edu.cn

shiqingxu@cjlu.edu.cn.

ABSTRACT: Structural and fluorescence properties of Ho^{3+}/Yb^{3+} co-doped germanosilicate glasses have been modified by tailoring the composition using lanthanide additive Lu_2O_3 . Raman spectra and X-ray Photoelectron spectra reveal that the addition of Lu_2O_3 can change the structure by increasing non-bridging oxygens (NBO) in this glasses. Meanwhile, an improved thermal stability (ΔT : from 110 to 187 °C) has also been obtained via Lu^{3+} 'lanthanide contraction'. Futhermore, the positive effect of changed glass structure gives excellent fluorescence properties by the decreasing cross relaxation process which are proved by the experimental upconversion, near-infrared and mid-infrared fluorescence spectra. Additionally, a double enhancement of a 2.0 μ m emission has been achieved successfully in this silica-germanate glass with 7 mol% Lu^{3+} addition, which possesses a larger emission cross section (4.41 \times 10⁻²¹ cm²) at 2022 nm. These results indicate that the optimized emission of Ho^{3+} for optical fiber laser can be achieved by tuning the glass structure using lanthanide additive Lu_2O_3 .

Keywords: Germanosilicate glasses; Lanthanide additive Lu₂O₃; NBO and BO; Energy transfer.

Download English Version:

https://daneshyari.com/en/article/7992735

Download Persian Version:

https://daneshyari.com/article/7992735

<u>Daneshyari.com</u>