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a b s t r a c t

Kinetics of the competitive growth of k-phases during the diffusive decomposition is commented on
multicomponent solid solutions. It analyzes how the common component among phases controls their
survival. Equations that determine the kinetic behavior of a multicomponent system with k-phases, in
the last stages of the diffusive decomposition, are discussed taking into account the common component
(or controller component). The parameters that determine which of these phases will survive during the
competitive process are deduced.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

The classical theory of phase coarsening in binary systems was
firstly developed by Lifshitz and Slyozov (LS) [1], and later by
Wagner (W) [2]. The LSW (Lifshitz-Slyozov-Wagner) theory pre-
dicts that, for asymptotically long aging times, the cube of the
average particle radius increases linearly with time and that the
supersaturation of solute in the matrix decays as t�1/3. Phase
coarsening in binary systems has been studied in considerable
depth by many researchers in the last decades. Some of these
classical formulations have been recently reviewed and discussed
[3].

Sincemostmaterials of commercial interest are not binaries, it is
of interest to extend the analysis of coarsening kinetics to ternary,
multicomponent and multiphase systems. One of the first studies
on coarsening in ternary systems was carried out by Bhattacharyya
and Russell [4]. These authors assumed that the coarsening rate

constant was controlled by that species in solutionwhich exhibited
the smallest product of diffusion coefficient times equilibrium
concentration. Bj€orklund et al. [5] and Slezov and Sagalovich [6-8]
considered the problem of phase coarsening in multicomponent
systems, restricted to dilute solutions. Kuehmann and Voorhees [9]
and Umantsev and Olson [10] derived a coarsening rate for the case
of a single precipitate phase of arbitrary composition in a non-
dilute matrix phase, but did not consider the effects of interfacial
curvature on the precipitate composition in their multicomponent
phase coarsening. Morral and Purdy [11-12] developed an initial
theory for phase coarsening in n-component alloys. However, they
predicted only the temporal evolution of the average particle
radius, and that the solution thermodynamics in no way affects the
coarsening kinetics. Philippe et al. [13] studied Ostwald ripening in
multicomponent alloys and focused on the thermodynamic effect
of the multicomponent. All these works mentioned above consid-
ered only the thermodynamic effect, ignoring the kinetic effect
from the nonzero volume fraction. In spite of the research pub-
lished on this subject, even the theory and simulations for phase
coarsening in multicomponent systems are rare [14].

Phase competition in late stages of the diffusive decomposition
in multicomponent systems has been scarcely treaty in the
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literature. One of these papers [15], applying the formalism referred
in Refs. [6-8], showed that a competition is possible between phases
having a common component. The final result of this competition
showed that only one of these phases survives. In this paper [15], the
conditions for existence of phases are determined. In this sense,
when the common component of the different phases is almost
completely absorbed, while the rest of component remain in solu-
tion, a competition then begins between the phases for the insuf-
ficient common component. At the end of the diffusive competition,
only one of the phases survives manifesting a universal size distri-
bution function independent of the initial distributions.

The above analyzes [6-8,15] are not detailed on the parameters
that could determine the kinetics of the phases survival during the
last stages of the diffusive decomposition. The present approach,
following the reasoning of [6-15], obtains a parameter that could
measure the “thermodynamic disadvantages” of each phase during
the competitive growth. Finally, it is proposed a sequence in which
k-1 stoichiometric phases in a multicomponent system will be
disappearing during the competition.

2. Basic equation system and discussion

According to [8], it is considered a n-component solid solution
with a small volumetric fraction of precipitated particles corre-
sponding to k-phases. Besides, it is assumed that as the ratio of the

average size of precipitates ðr) to the average distance (l) between

them is small ðr≪lÞ; a direct interaction among precipitates can be
discarded during the diffusive competition. Since the precipitate
growth rate depends on their sizes and the phase particularities,
the above condition limits this approach to systems where the
growth rates of all stoichiometric phases are in the same order.

Then, the basic equations that allows to characterize the above
system have k-continuity equations in the size space (1) and n laws
of the matter conservation of the components [6-8] (2):
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where f sðr; tÞ is the size distribution function of the precipitates of
the s-th phase at a given moment in time, Ssi denotes summation
over all phases containing the i-th component, ci is the average
concentration of the i-th component in the solid solution at a given
moment in time, Jsri is the flux of atoms of the i-th component that
enters (or leaves) of the precipitates of the s-th phase per unit
surface area of precipitates with radius r, and n0 is the number of
sites in the matrix per unit volume.

Also,
Pk

s¼1n
s � k stoichiometric relationships for the fluxes Jsri ,

are needed (3):

Jsri
gsi

¼ Jsrd
gsd

(3)

where ns is the number of components in the s-th phase and the
subindex d is associated with the d-th component, therefore gi

s and
gd
s are the stoichiometric coefficients of the i-th and d-th component

respectively of the s-th phase. These stoichiometric relationships
establish the atomic fluxes of components that effectively form (or
dissolve) the elementary cells or elementary entities of the chemical
compound (precipitate of radius r) belonging to s-th phase.

On the other hand, let us define to Fsri as the net flux of atoms of
the i-th component that arrives by diffusion close to the surface of
precipitate of radius r belonging to the s-th phase; thus, the atoms
of this component that can cross the interphase boundary, taking
into account the stoichiometric relations (3) of the s-th phase and
the interphase particularitities, will define the Jsri flux. This is given
because the Fsri flux will only depend on the atomic mobility of the
components and on the concentration gradients of the components
in the matrix [16e17], whereas the Jsri flux will besides depend of
the stoichiometric relationships (3) in the precipitate (s-th phase)
and particularities of the boundary between the matrix and pre-
cipitate of the s-th phase. Then, according to this, it should be
noticed that the condition Fsri � Jsri has to be satisfied for each
component of the s-th phase. Thus, all atoms that arrive (or go
away) by diffusion close to the precipitate surface should not
necessarily enter (or leave) to the same one.

The ratio of Fsri with the corresponding stoichiometric coefficient
gsi will give the rate per unit area of the greatest quantity of
elementary cells or entities that could be formed, with the i-th
component in the precipitate of radius r belonging to the s-th
phase, supposing that sufficient atoms of the remaining compo-
nents can enter the precipitate. It is easy to see that each compo-
nent has a different value of this ratio in the same phase. Thus, we
define the component that controls the s-th phase growth to that
ratio having the smallest rate to form elementary cells. Therefore,
this component will be denoted by the sub index d in advance.
Then, it can be written as:

Fsrd
gsd

<
Fsri
gsi

(4)

In other words, only the component that controls the s-th phase
growth (controller component) will have assured enough atoms of

the remaining components to form actually Fs
rd
gs
d
elementary cells (or

elementary entities) per second and per unit area of precipitate.
According to the above, Fsrd ¼ Jsrd: It can be noticed that the
controller component could change in the course of the decom-
position diffusive because that Fsri depends on time; that is to say, a
phase could have different controller components during the
competitive growth in time.

Now, allow us to designate to a component of each phase that

satisfies the following relation Qm
gs
m
< Qi

gs
i
with the m subindex. Here Qi

is the all quantity of atoms of the i-th component in the system

formed by the solid solution and precipitates. The Qi
gs
i
ratio gives the

amount of elementary cells (or elementary entities) that could be
formed of the s-th phase with Qi atoms of the i-th component
supposing that enough atoms of the remaining components exist.

When the phases do not have components in common, the true
quantity of elementary cells that can be formed corresponds to the

smaller Qi
gs
i
ratio, or with the Qm

gs
m
value. On the contrary, when phases

have some components in common, the real quantity of the
elementary cells or entities that can be formed will depend of these
common components. This latter situation will be now treated.

To simplify the analysis, we particularize in a n-component
system with k-phases and only one component in common
(denoted by the c sub index) among the phases. Firstly, if a relation
like (5) is satisfied:

QcPk
s¼1
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m
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Then, it means that sufficient atoms of the common component
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