Accepted Manuscript

Effect of deposition parameters on structural, mechanical and electrochemical properties in Ti/TiN thin films on AISI 316L substrates produced by r. f. magnetron sputtering

M.A. Domínguez-Crespo, A.M. Torres-Huerta, E. Rodríguez, A. González-Hernández, S.B. Brachetti-Sibaja, H.J. Dorantes-Rosales, A.B. López-Oyama

PII: S0925-8388(18)30816-8

DOI: 10.1016/j.jallcom.2018.02.319

Reference: JALCOM 45195

To appear in: Journal of Alloys and Compounds

Received Date: 21 September 2017 Revised Date: 22 February 2018

Accepted Date: 26 February 2018

Please cite this article as: M.A. Domínguez-Crespo, A.M. Torres-Huerta, E. Rodríguez, A. González-Hernández, S.B. Brachetti-Sibaja, H.J. Dorantes-Rosales, A.B. López-Oyama, Effect of deposition parameters on structural, mechanical and electrochemical properties in Ti/TiN thin films on AISI 316L substrates produced by r. f. magnetron sputtering, *Journal of Alloys and Compounds* (2018), doi: 10.1016/j.jallcom.2018.02.319.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Effect of deposition parameters on structural, mechanical and electrochemical properties in Ti/TiN thin films on AISI 316L substrates produced by r. f. magnetron sputtering.

M. A. Domínguez-Crespo^{a*}, A. M. Torres-Huerta^a, E. Rodríguez^a, A. González-Hernández^a, S. B. Brachetti-Sibaja^b, H. J. Dorantes-Rosales^c, A. B. López-Oyama^{a,d}

* Corresponding author e-mail address: mdominguezc@ipn.mx

ABSTRACT

Synthesis of Ti/TiN hard coatings on different substrates has been the subject of several researchers in the last decades; however, a more compressive perspective is required for the investigation of the influence of deposition parameters depending on the substrate. This paper focus on evaluating tribological and electrochemical properties of Ti/TiN bilayered coatings deposited by r.f. magnetron sputtering on AISI 316L stainless steel substrates in 3.5 wt% NaCl solutions. Numerous factors can influence the electrochemical performance and tribological properties of the coatings; for this reason, the surface modifications through thickness, texturing and morphology were realized varying the sputtering parameters (substrate temperature, T, Power, P, target-to-substrate distance t-s, and Ar/N₂ gas ratio). Ti/TiN films were composed of Ti, N, which are correlated with to Ti-N, Ti-O-N and O-Ti-O phases. The friction coefficient varies from 0.12 to 1.3 by the influence of the deposition parameters; the adhesion strength shows a cohesive failure indicating that in all samples coating adhesion to steel was high enough. The corrosion resistance of Ti/TiN bilayered coatings was correlated to both the Ti/TiN film densification and formation of O-Ti-O compounds.

 $\textbf{Keywords} \hbox{:}\ Ti/TiN\ Thin\ films,\ XPS,\ Microstructure,\ Electrochemical\ Performance,\ Hardness.$

^a Instituto Politécnico Nacional, CICATA-Altamira, Km 14.5 Carretera Tampico-Puerto Industrial Altamira, C.P. 89600 Altamira, Tamps. México

^b Tecnológico Nacional de México, Instituto Tecnológico de Ciudad Madero, Centro de Investigación en Petroquímica, Prolongación Bahía de Aldair, Ave. De las Bahías, Parque de la Pequeña Mediana Industria, Altamira, Tamaulipas, México

^c Instituto Politécnico Nacional, SEPI-ESIQIE, Departamento de Metalurgia, Ciudad de México, C.P. 07738, México.

^d CONACYT Research Fellow–CICATA-Altamira, Ave. Insurgentes Sur 1582, Col. Crédito Constructor, Del. Benito Juárez, C.P. 03940. Cd De México, México

Download English Version:

https://daneshyari.com/en/article/7992782

Download Persian Version:

https://daneshyari.com/article/7992782

<u>Daneshyari.com</u>