Accepted Manuscript

Ni doped WO₃ nanoplates: An excellent photocatalyst and novel nanomaterial for enhanced anticancer activities

Faisal Mehmood, Javed Igbal, M. Ismail, Arshad Mehmood

PII: S0925-8388(18)30427-4

DOI: 10.1016/j.jallcom.2018.01.409

Reference: JALCOM 44873

To appear in: Journal of Alloys and Compounds

Received Date: 2 November 2017
Revised Date: 15 January 2018
Accepted Date: 31 January 2018

Please cite this article as: F. Mehmood, J. Iqbal, M. Ismail, A. Mehmood, Ni doped WO₃ nanoplates: An excellent photocatalyst and novel nanomaterial for enhanced anticancer activities, *Journal of Alloys and Compounds* (2018), doi: 10.1016/j.jallcom.2018.01.409.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Ni doped WO_3 nanoplates: an excellent photocatalyst and novel nanomaterial

for enhanced anticancer activities

Faisal Mehmood^{1, 2}*, Javed Iqbal ²*, M. Ismail³, Arshad Mehmood⁴

¹ Department of Physics, International Islamic University, Islamabad, Pakistan

² Laboratory of Nanoscience and Technology (LNT), Department of Physics, Quaid-i-Azam University, Islamabad, Pakistan

³Institute of Biomedical and Genetic Engineering (IBGE), Islamabad, Pakistan

⁴Nano Devices Labs, National Institute of Lasers and Optronics, Islamabad, Pakistan

*Corresponding Author: faisal.phdphy20@iiu.edu.pk , javed.saggu@qau.edu.pk

Abstract

We report on the effects of Ni doping on the structural, optical, photocatalytic and anticancer

activities of WO₃. The chemical co-precipitation method was used to synthesize the undoped and

Ni doped WO₃ nanoplates. The Ni ions doping into WO₃ was verified by XRD, EDX, FTIR and

Raman spectroscopy. The substitution of Ni²⁺ ions on the sites of W⁶⁺ ions was confirmed

through X-ray photoelectron spectroscopy (XPS) analysis. The diffusion reflectance

spectroscopy revealed the narrow optical band gap in the visible region for undoped sample, this

further reduced upon Ni doping. Photoluminescence spectroscopy was used to depict the defect

in undoped and doped WO₃ nanoplates. Most importantly, the mineralization degree of organic

dye using Ni doped WO₃ photocatalyst was determined by total organic carbon analysis (TOC),

reaching percentages of mineralization up to 96 % of methyl red in just 2 hour under illumination

of visible light. Interestingly, it was also observed that the percent cells viability of human breast

(MCF-7) and liver (Hep-2) cancers cells were decreased remarkably up to 30% and 35%

respectively with 5% Ni ions doping.

Keywords: Nanoplates; Raman; PL; XPS; Methyl red; Cancer

1. Introduction

Environmental pollution is emerging as a serious health care problem in the developed and under

developed nations. The large amounts of industrial waste including organic textile dyes and acids

Download English Version:

https://daneshyari.com/en/article/7992790

Download Persian Version:

https://daneshyari.com/article/7992790

Daneshyari.com