Accepted Manuscript

Large electrostrain response in binary Bi_{1/2}Na_{1/2}TiO₃-Ba(Mg_{1/3}Nb_{2/3})O₃ solid solution ceramics

Xuanrui Jia, Jingji Zhang, Hongjie Xing, Jiangying Wang, Peng Zheng, Fei Wen

PII: \$0925-8388(17)34470-5

DOI: 10.1016/j.jallcom.2017.12.274

Reference: JALCOM 44360

To appear in: Journal of Alloys and Compounds

Received Date: 25 August 2017
Revised Date: 8 November 2017
Accepted Date: 23 December 2017

Please cite this article as: X. Jia, J. Zhang, H. Xing, J. Wang, P. Zheng, F. Wen, Large electrostrain response in binary Bi_{1/2}Na_{1/2}TiO₃-Ba(Mg_{1/3}Nb_{2/3})O₃ solid solution ceramics, *Journal of Alloys and Compounds* (2018), doi: 10.1016/j.jallcom.2017.12.274.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Large electrostrain response in binary Bi_{1/2}Na_{1/2}TiO₃-Ba(Mg_{1/3}Nb_{2/3})O₃ solid solution ceramics

Xuanrui Jia¹, Jingji Zhang¹,*, Hongjie Xing¹, Jiangying Wang¹,*, Peng Zheng², Fei Wen²

¹College of Materials Science and Engineering, China Jiliang University, Hangzhou 310018, China

²College of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, China

Abstract: A binary solid solution (1-x)Bi_{0.5}Na_{0.5}TiO₃-xBa(Mg_{1/3}Nb_{2/3})O₃ ((1-x)BNT-xBMN) was

fabricated by the conventional solid state reaction, and compositionally dependent micro-structure

and macro-electrical properties were systematically investigated. The BMN substitution was found

to induce a transition from dominant ferroelectric to ergodic relaxor phase, resulting in the

ferroelectric-to-relaxor phase transition temperature decreasing from 102°C to below room

temperature. Accordingly, the optimal piezoelectric property of d_{33} =122 pC/N and the maximum

strain of 0.35% with normalized strain of 493 pm/V were achieved at ambient temperature for the

compositions with x=0.044 and 0.052, respectively. The piezoelectric and strain properties are

dominated by the contributions from the irreversible domain switching and the recoverable

ergodic-ferroelectric phase transition, respectively.

Keywords: Bi_{0.5}Na_{0.5}TiO₃; phase transition; piezoelectric properties; electrostrain

*Corresponding author. Tel/fax: +86 571 87676407; Email: zjjtongji@gmail.com (Jingji Zhang); wjyliu@163.com (Jiangying Wang).

Download English Version:

https://daneshyari.com/en/article/7993208

Download Persian Version:

https://daneshyari.com/article/7993208

Daneshyari.com