Accepted Manuscript

Effect of molybdenum on phases, microstructure and mechanical properties of $Al_{0.5}CoCrFeMo_XNi$ high entropy alloys

Y.X. Zhuang, X.L. Zhang, X.Y. Gu

PII: S0925-8388(18)30433-X

DOI: 10.1016/j.jallcom.2018.02.003

Reference: JALCOM 44879

To appear in: Journal of Alloys and Compounds

Received Date: 21 September 2017

Revised Date: 25 January 2018 Accepted Date: 1 February 2018

Please cite this article as: Y.X. Zhuang, X.L. Zhang, X.Y. Gu, Effect of molybdenum on phases, microstructure and mechanical properties of Al_{0.5}CoCrFeMo_XNi high entropy alloys, *Journal of Alloys and Compounds* (2018), doi: 10.1016/j.jallcom.2018.02.003.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Effect of Molybdenum on Phases, Microstructure and Mechanical Properties of Al_{0.5}CoCrFeMo_xNi High Entropy Alloys

Y.X. Zhuang^{1,2*}, X.L. Zhang^{1,2}, X.Y. Gu^{1,2}

¹Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, Shenyang 110819, China.

* To whom correspondence should be addressed, email: yxzhuang@epm.neu.edu.cn; Tel: +86-24-83680156; Fax:+86-24-83681758

Abstract

Effect of molybdenum on phases, microstructure and mechanical properties of Al_{0.5}CoCrFeMo_xNi (x=0-0.5 mol) high entropy alloys has been investigated in this paper. The microstructure, phase constituents and mechanical properties of the alloys have been studied using scanning electron microscopy, X-ray diffraction, transmission electron microscopy, compressive and hardness tests. The possible equilibrium phases existing in the alloys have also been evaluated using the Thermo-Calc program. The as-cast Al_{0.5}CoCrFeMo_xNi alloys have typical dendrite microstructure. The alloys with x=0 and 0.1 consist of FCC and (Ni,Al)-rich ordered BCC phase, while the other four alloys are composed of FCC, (Ni,Al)-rich ordered BCC phase and (Cr,Mo)-rich σ phase. The thermodynamic calculation shows that Mo changes the phase formation order, mole fraction and composition of the equilibrium phases in the Al_{0.5}CoCrFeMo₂Ni alloys. The addition of Mo enhances formation of σ phase in the Al_{0.5}CoCrFeMo_xNi alloys, improves the hardness and compressive strength of as-cast alloys, and reduces the ductility of the alloys. The Al_{0.5}CoCrFeMo_{0.3}Ni and Al_{0.5}CoCrFeMo_{0.4}Ni alloys have balanced properties of compressive strength and ductility. Al_{0.5}CoCrFeMo_{0.3}Ni alloy has a $\sigma_{0.2}$ of 814 MPa, an ultimate strength of 2101 MPa, and a fracture strain of 31%, while $Al_{0.5}CoCrFeMo_{0.4}Ni$ alloy has a $\sigma_{0.2}$ of 1091 MPa, an ultimate strength of 2117 MPa, and a fracture strain of 18%.

Key words: high entropy alloy; microstructure; phases; mechanical properties; thermodynamic calculation.

² School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China

Download English Version:

https://daneshyari.com/en/article/7993292

Download Persian Version:

https://daneshyari.com/article/7993292

Daneshyari.com