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a b s t r a c t

This paper describes proposition of sliding mode control using strict Lyapunov function for
robot manipulators described in terms of some quasi-velocities (QV). The considered here
quasi-velocities contain both kinematical and dynamical parameters of a manipulator.
Introducing QV together with joint position leads to one first-order dynamic equations
with diagonal mass matrix instead of a second-order differential equation and one first-
order equation which describes transformation between joint velocities and QV. The pre-
sented controller based on strict Lyapunov function guarantees closed-loop stability and
global positioning. Differences between classical sliding mode control scheme and the con-
sidered here were shown on 3 d.o.f., 3-D Yasukawa-like robot.

� 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Trajectory control problem arises if the manipulator is required to follow a desired trajectory. In the robotic literature two
approaches are usually used: computer torque (inverse dynamic control) and sliding mode control (Sciavicco and Siciliano,
1996; Slotine and Li, 1991; Spong, 1989; Wen, 1990; Wen and Bayard, 1988). Sliding mode approach (Slotine and Li, 1987;
Slotine and Li, 1991) relies on exploitation the structure of Lagrangian formulation for rigid manipulators without lineariza-
tion its dynamic equations. For example a control scheme combining the saturation and integral control is described in Liu
and Goldenberg (1996). Also Spong (1992) presented a modified controller based on strict Lyapunov function. One of
applications allows to control a shape (Mochiyama et al., 1999). Sliding mode control is also useful for flexible manipulators
(Arteaga, 2003).

Classical description leads to obtaining second-order nonlinear differential equations of motion. These equations involve
both generalized position vector and velocity vector which represent a joint space of manipulator. However for control pur-
poses first-order equations of motion with diagonal mass matrix seem more convenient than the second-order equations.
There exist several methods which result in such equations. All of them are based on some quasi-velocities which depend
on the kinematic and dynamic parameters of the manipulator (e.g. Jain and Rodriguez, 1995; Loduha and Ravani, 1995). Jain
and Rodriguez (1995) presented diagonalized dynamics for manipulators which used normalized (NQV) and unnormalized
(UQV) quasi-velocities. The obtained equations of motion was based on the spatial operator algebra. On the contrary Loduha
and Ravani proposed in Loduha and Ravani (1995) a rate transformation matrix, which served for decoupling of the dynam-
ical equations of motion. The obtained matrix was congruent to the original system mass matrix. This method was related to
the modified Kane’s equations given e.g. in Kane and Levinson (1983).

In this paper we propose a sliding mode controller in terms of UQV or GVC using a strict Lyapunov function. By the strict
Lyapunov function we mean a radially unbounded and globally positive definite function whose time derivative along all
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trajectories of a closed-loop system results in a globally negative definite function. A class of such functions (but different as
the given here) was considered in Santibanez and Kelly (1997). The strict Lyapunov function for classical equations of motion
was given by Spong Spong, 1992. The second aim is to point at some advantages which offers the control scheme in terms of
QV. It is also shown features which are observable if the system under the new control is considered. They arise from the fact
that QV are decoupled in the kinetic energy sense and lead to decoupling of the mass matrix of the manipulator.

The paper is organized as follows. Section 2 gives diagonalized equations of motion in terms of QV. In Section 3 the sliding
mode controller in joint space of manipulator is presented. Simulation results comparing performance between the new con-
trol scheme and the classical controller for 3 d.o.f., 3-D Yasukawa-like robot are contained in Section 4. The last section offers
conclusions.

2. Dynamics in terms of quasi-velocities

Recall that the classical equations of motion for a manipulator can be written in the following form Slotine and Li (1987,
1991):

MðhÞ€hþ Cðh; _hÞ _hþ GðhÞ ¼ s; ð1Þ

where N is the number of degrees of freedom, h; _h; €h 2 RN is the vectors of generalized positions, velocities, and accelera-
tions, respectively, MðhÞ 2 RN�N is the system mass matrix, Cðh; _hÞ 2 RN is the matrix of Coriolis and centrifugal forces in
classical equations of motion, GðhÞ 2 RN is the vector of gravitational forces in classical equations of motion, s 2 RN is the
vector of generalized forces.

Assuming that there exist some positive constants bm, bM, bc, bg, and vector x the following properties can be established
(Arteaga, 2003; Sciavicco and Siciliano, 1996; Slotine and Li, 1991; Spong, 1992) (I denotes the identity matrix):

(P1) The inertia matrix M(h) satisfies the inequality bmI 6 MðhÞ 6 bMI; 8h 2 RN.
(P2) Matrix Cðh; _hÞ satisfies Cðh; _hÞ 6 bck _hk, 8 _h 2 RN.
(P3) One can define skew symmetric matrix: xT½12 _MðhÞ � Cðh; _hÞ�x ¼ 0, 8x 2 RN.
(P4) The gravity vector G(h) is bounded as kG(h)k 6 bg, 8h 2 RN.

Based on the method offered in Loduha and Ravani (1995) (for GVC) the same manipulator we can describe with two first-
order equations: the diagonalized equation of motion and the velocity transformation equation:

H _fþ Cðh; fÞfþ GfðhÞ ¼ q ð2Þ
_h ¼ Bf ð3Þ

where matrices and vectors are given as follows ( _B denotes time derivative of B):

H ¼ BTMðhÞB ð4Þ
Cðh; fÞ ¼ BT½MðhÞ _Bþ Cðh; _hÞB� ð5Þ
GfðhÞ ¼ BTGðhÞÞ;q ¼ BTs: ð6Þ

In Eqs. (2)–(6) H is a diagonal matrix congruent to mass matrix of manipulator M(h) (this matrix can be obtained using the
method described in Loduha and Ravani (1995)), f; _f are vectors of inertial quasi-velocities and its time derivative, respec-
tively, C(h,f) is a new Coriolis force vector, Gf(h) is a new gravitational forces vector, and q is a vector of quasi-forces. The
invertible matrix B is the rate transformation matrix which converts joint velocities into generalized velocity components.

Remark 1. It is assumed that the properties (P1)–(P4) are true. The mass matrix B arises from decomposition of the matrix
M(h) then from (P1) boundedness of the matrix H is guaranteed. From (P2)–(P3) one can conclude that C(h,f) is bounded
(because the matrix _B results from _MðhÞ). Also vector BTG(h) is bounded because of the property (P1) and (P4). If we use UQV
(Jain and Rodriguez, 1995) instead of GVC Eqs. (2)–(6) are also valid in this general form.

Remark 2. From Eqs. (3) and (4) arises that the kinetic energy of the manipulator can be expressed as follows:

Kðh; fÞ ¼ 1
2

_hTMðhÞ _h ¼ 1
2

fTBTMðhÞBf ¼ 1
2

fTHf: ð7Þ

This expression says that each quasi-velocity fk can be considered separately in the sense of the kinetic energy. It is because a
part of the kinetic energy of each link which concerns internal couplings is transformed into k-th quasi-velocity.

Remark 3. The matrix H is diagonal and hence each k-th equation of motion is decoupled from other equations. The diagonal
elements of this matrix allows one to detect the total inertia which is transferred by each joint. The total inertia depends on
the manipulator design and on the used decomposition method (i.e. UQV or GVC). However in each case it represents some
inertia arising from the fact that the manipulator is not rigid body but a multi-rigid body.
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