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a b s t r a c t

A one-dimensional model for the dynamics of linear piezoelectric straight prismatic beam
based on the Euler–Bernoulli’s theory and appropriate hypotheses on the electric displace-
ment field is developed. The equations of motion of longitudinal and flexural vibrations are
formulated in terms of one-dimensional mechanical and electrical displacement fields. The
formulation uses the beam equilibrium equations including inertia forces and one-dimen-
sional versions of Gauss–Maxwell equations. Applied approach yields a technical theory of
linear piezoelectric beams, it rests on ad hoc assumptions in order to neglect certain terms,
the mechanical displacements and axial component of the electric displacement are
assumed to be linear functions of the cross-sectional coordinates.

� 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Since the brothers Curie discovered the piezoelectricity in 1880 many scientists have investigated extensively the piezo-
electric materials which are widely used to design smart structures. This statement is documented by many articles on the
subject (Daví, 1996; Dökmeci, 1988; Loewy, 1967; Rao and Sunar, 1994; Smith, 1992; Sun et al., 2001) as well as by some
dedicated books such as Cady (1964), Manson (1950), Tzou (1993), Yang (2005, 2006). A lot of papers deal with the dynamics
of piezoelectric beams (Daví, 1997; Dökmeci, 1974; Paul and Natarajan, 1994; Wang and Quek, 2000). Extensional and flex-
ural motions with shear deformations of electroelastic beams with rectangular cross section are derived from the three-
dimensional equations using double power series expansions defined for the thickness and width directions by Yang
(1998, 2005, 2006); Yang and Zhang (1999); and Yang et al. (1999, 2000). In the above mentioned papers the electric field
is applied in thickness direction and the thickness and axially poling ceramic beams are considered. In the most cases upper
and lower faces of ceramic beams with rectangular cross-section are electroded. The papers of Yang (1998, 2005, 2006); Yang
and Zhang (1999); and Yang et al. (1999, 2000) focus on dynamic theories of piezoelectric structures for device applications.
Theoretical analysis for electroelastic beams of generic cross-section is presented by Daví (1997) and Dökmeci (1974). Paper
by Daví (1997) presents a one-dimensional model for the dynamics of linear piezoelectric rods starting from the equations of
the three-dimensional linear piezoelectricity. The method of internal constraint and the concept of electrical thinness are
used by Daví (1997). Equations of motion with boundary conditions for extensional, flexural and torsional vibrations are ob-
tained with the help of a variational theorem deduced from Hamilton’s principle (Daví, 1997). Dökmeci (1974) presented a
higher order linear theory of piezoelectric crystal bars, in which, a power series representation in cross-sectional coordinates
is employed for both the mechanical displacement and electric potential fields. The governing equations of the piezoelectric
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crystal bars, by the use of power series representation, are deduced from a variational theorem. A set of one-dimensional
approximate equations of motion, charge equations of electrostatics, strain–displacement and electric field – electric poten-
tial relations and constitutive equations with the initial and boundary conditions are derived by Dökmeci (1974). The char-
acter of the present paper is mainly theoretical. The aim is to derive the equations of motion of axially polarized linear
piezoelectric beam for longitudinal and flexural vibrations. The assumed form of the mechanical displacements satisfies
the requirements of the Euler–Bernoulli beam model, that is, the cross-section is rigid in its plane and remains orthogonal
to the deformed axis. It is assumed that the axial component of the electric displacement is a linear function of the cross-
sectional coordinates. This assumption is more general as used in paper by Daví (1997), where it has been assumed the axial
component of the electric displacement is constant on the cross-section. In this paper, a direct method, which does not use
the variational formulation, is presented to get a technical theory for linear piezoelectric beams. The technical theory of
beams may be characterized as approximation for linear theories in which the displacement varies linearly in the cross-sec-
tional coordinates, in our case, the displacement is subjected to the Euler–Bernoulli’s hypothesis. The effects of the trans-
verse shear deformations are neglected. In cases of technical interest, the technical theory yields good results for
displacements and stress resultants (Daví, 1992).

2. Derivation of expressions of normal stress and electric potential

Let B = A � (0,L) be a right cylinder of length L, with its cross-section A which may be a simply or multiply-connected
bounded regular region of R2. Let A1 and A2 be the bases, and Am = oA � (0,L) the mantle of B. The boundary surface of B con-
sists of three part as, oB = A1 [ A2 [ Am. The rectangular Cartesian coordinate frame Ox1x2x3 is supposed to be chosen in such a
way that axis Ox3 is parallel to the generators of the cylindrical boundary surface segment Am and the plane Ox1x2 contains
the terminal cross-section A1. The position of end cross section A2 is given by x3 = L. A point P in �B ¼ B [ oB is indicated by the
vector ~OP ¼ r ¼ x1e1 þ x2e2 þ x3e3 ¼ Rþ x3e3, where e1, e2 and e3 are the unit vectors of the coordinate system Ox1x2x3

(Fig. 1). Denote u = u(x1,x2,x3,t) the displacement field, where t is the time (0 6 t 6 s). The longitudinal and flexural motions
of the considered beam is approximated by the next displacement field according to the Euler–Bernoulli’s hypothesis

uðx1; x2; x3; tÞ ¼ Uðx3; tÞ þ uðx3; tÞ �
oU
ox3
� R

� �
e3; ð1Þ

U ¼ Uðx3; tÞ ¼ U1ðx3; tÞe1 þ U2ðx3; tÞe2: ð2Þ

In Eq. (1), the scalar product of two vectors is denoted by dot (Lurje, 1970; Malvern, 1969). The strain–displacement rela-
tionships of the linearized theory of elasticity give for the strains (Lurje, 1970; Malvern, 1969)

e11 ¼ e22 ¼ e12 ¼ e13 ¼ e23 ¼ 0; ð3Þ

e33 ¼
ou
ox3
� o2U

ox2
3

� R: ð4Þ

Let D = D(R,x3,t) be the electric displacement field which has the next representation,

D ¼ D1ðR; x3; tÞe1 þ D2ðR; x3; tÞe2 þ D3ðR; x3; tÞe3 ¼ dðR; x3; tÞ þ D3ðR; x3; tÞe3: ð5Þ

It is assumed that the axial component of the electric displacement field is a linear function of the cross-sectional coordinates
x1, x2, that is

D3ðR; x3; tÞ ¼
od0

ox3
þ od1

ox3
� R; d0 ¼ d0ðx3; tÞ; d1 ¼ d1ðx3; tÞ d1 � e3 ¼ 0: ð6Þ

Fig. 1. Geometry of axially polarized linear piezoelectric beam.
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