Accepted Manuscript

Nanocrystalline Ti/AZ61 magnesium matrix composite: Evolution of microstructure and mechanical property during annealing treatment

Huan Yu, Yu Sun, Zhipeng Wan, Haiping Zhou, Lianxi Hu

PII: S0925-8388(18)30137-3

DOI: 10.1016/j.jallcom.2018.01.136

Reference: JALCOM 44600

To appear in: Journal of Alloys and Compounds

Received Date: 15 November 2017

Revised Date: 2 January 2018

Accepted Date: 9 January 2018

Please cite this article as: H. Yu, Y. Sun, Z. Wan, H. Zhou, L. Hu, Nanocrystalline Ti/AZ61 magnesium matrix composite: Evolution of microstructure and mechanical property during annealing treatment, *Journal of Alloys and Compounds* (2018), doi: 10.1016/j.jallcom.2018.01.136.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Nanocrystalline Ti/AZ61 magnesium matrix composite: evolution of

microstructure and mechanical property during annealing treatment

Huan Yu^{a,b}, Yu Sun^{a,b,*}, Zhipeng Wan^{a,b}, Haiping Zhou^c, Lianxi Hu^{a,b,*}

^a National Key Laboratory for Precision Hot Processing of Metals, Harbin Institute of

Technology, Harbin 150001, China

^b School of Materials Science and Engineering, Harbin Institute of Technology,

Harbin 150001, PR China

^c College of Mechanical and Electronic Engineering, Shandong University of Science

and Technology, Qingdao 266590, PR China

Abstract

Nanocrystalline Ti/AZ61 magnesium matrix composite, prepared by mechanical

milling, was annealed in the temperature range of 573-723 K for various durations.

During annealing treatment, diffusion of Al and Ti elements, formation of precipitates

and grain growth behavior were observed and the evolution of hardness was obtained.

Based on microstructural evolution, the mechanism for the precipitating of Ti and Al

from magnesium matrix was analyzed. And the corresponding schematic illustration

of microstructural evolution model was proposed. By the observation from

high-resolution transmission electron microscopy, it was found that dispersing

nanometer sized particulates, precipitated from Ti and Al supersaturated Mg solid

solution, pined up magnesium grain boundaries. During annealing treatment, the

nano-scaled precipitates together with original submicron Ti particulates hindered the

* Corresponding authors:

E-mail: yusun@hit.edu.cn (Y. Sun), hulxhit@sina.cn (L. Hu).

Download English Version:

https://daneshyari.com/en/article/7993373

Download Persian Version:

https://daneshyari.com/article/7993373

<u>Daneshyari.com</u>