Accepted Manuscript

Ordered corn-like CuCo₂O₄ nanoforests covering Ni foam for a high-performance all-solid-state supercapacitor

Yuqiao Wang, Dawei Yang, Jianing Lian, Tao Wei, Yueming Sun

PII: S0925-8388(18)30169-5

DOI: 10.1016/j.jallcom.2018.01.168

Reference: JALCOM 44632

To appear in: Journal of Alloys and Compounds

Received Date: 13 September 2017
Revised Date: 21 November 2017
Accepted Date: 12 January 2018

Please cite this article as: Y. Wang, D. Yang, J. Lian, T. Wei, Y. Sun, Ordered corn-like CuCo₂O₄ nanoforests covering Ni foam for a high-performance all-solid-state supercapacitor, *Journal of Alloys and Compounds* (2018), doi: 10.1016/j.jallcom.2018.01.168.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Ordered corn-like $CuCo_2O_4$ nanoforests covering Ni foam for a high-performance all-solid-state supercapacitor

Yuqiao Wang^{a,*}, Dawei Yang^a, Jianing Lian^a, Tao Wei^{b,*}, Yueming Sun^a

^aSchool of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China

^bSchool of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China

*Corresponding author. Tel: +86 25 52090619; Fax: +86 25 52090621

E-mail address: yqwang@seu.edu.cn (Y. Wang), weitao@wmu.edu.cn (T. Wei).

Abstract

The ordered corn-like $CuCo_2O_4$ nanoforests were directly deposited on Ni foam by a hydrothermal/annealing method as a binder-free electrode for a symmetric supercapacitor. The ordered one-dimensional nanostructure can enhance an effective electron transport. The abundant sub-structure can be used to contribute to increasing a large number of active sites for Faradaic reactions. The binder-free loading can help to reduce the ohmic polarization during the charge/discharge process. For three-electrode configuration, the specific capacitance achieved 820 F/g at a current density of 2 mA/cm² and long-term capacity retention of \sim 94% after 1500 cycle. The symmetric device gained a high energy density of 17 W h/kg at a power density of 480 W/kg.

Keywords: Transition metal oxides, Ordered structure, Supercapacitor, Energy density, Stability

Download English Version:

https://daneshyari.com/en/article/7993553

Download Persian Version:

https://daneshyari.com/article/7993553

<u>Daneshyari.com</u>