Accepted Manuscript

A comparative study of crystalline and amorphous $\text{Li}_{0.5}\text{La}_{0.5}\text{TiO}_3$ as surface coating layers to enhance the electrochemical performance of $\text{LiNi}_{0.815}\text{Co}_{0.15}\text{Al}_{0.035}\text{O}_2$ cathode

Chun-Liu Xu, Wei Xiang, Zhen-Guo Wu, Yong-Chun Li, Ya-Di Xu, Wei-Bo Hua, Xiao-Dong Guo, Xiao-Bing Zhang, Ben-He Zhong

PII: S0925-8388(17)34389-X

DOI: 10.1016/j.jallcom.2017.12.193

Reference: JALCOM 44279

To appear in: Journal of Alloys and Compounds

Received Date: 20 October 2017
Revised Date: 24 November 2017
Accepted Date: 18 December 2017

Please cite this article as: C.-L. Xu, W. Xiang, Z.-G. Wu, Y.-C. Li, Y.-D. Xu, W.-B. Hua, X.-D. Guo, X.-B. Zhang, B.-H. Zhong, A comparative study of crystalline and amorphous Li_{0.5}La_{0.5}TiO₃ as surface coating layers to enhance the electrochemical performance of LiNi_{0.815}Co_{0.15}Al_{0.035}O₂ cathode, *Journal of Alloys and Compounds* (2018), doi: 10.1016/j.jallcom.2017.12.193.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

A comparative study of crystalline and amorphous Li_{0.5}La_{0.5}TiO₃ as surface coating layers to enhance the electrochemical performance of LiNi_{0.815}Co_{0.15}Al_{0.035}O₂ cathode

Chun-Liu Xu,^a Wei Xiang,^{b,c*} Zhen-Guo Wu,^a Yong-Chun Li,^a Ya-Di Xu,^a Wei-Bo Hua,^d Xiao-Dong Guo,^{a*} Xiao-Bing Zhang,^e and Ben-He Zhong^a

^eChongqing Natural Gas Purification Plant, Petrochina Southwest Oil & Gasfield Company, Chongqing, 401220, P.R.China.

*Corresponding authors:

E-mail address: <u>xiaodong2009@163.com</u>; xiangwei@cdut.edu.cn. Tel: +86-28-85406702; Fax: +86-28-85406702.

Abstract:

Surface coating is an effective strategy to boost the application of LiNi_{0.815}Co_{0.15}Al_{0.035}O₂ in the lithium ion batteries. The crystalline state of the coating layer is crucial for the transportation of lithium ions, the suppression of involved side reaction and the improvement of electrode structure stability, which ultimately determine the electrochemical performance. Here, the effects of crystalline state of Li_{0.5}La_{0.5}TiO₃ on the electrochemical performance of LiNi_{0.815}Co_{0.15}Al_{0.035}O₂ are comparatively investigated. The Li_{0.5}La_{0.5}TiO₃ coating layer with a thickness of about 2 nm is introduced on the surface of LiNi_{0.815}Co_{0.15}Al_{0.035}O₂, and the crystalline state (crystalline or amorphous) of coating layer is successfully controlled by tuning post-annealing temperature. The structure stability, dynamics performance, reaction activity and electrochemical performance of the coated and pristine samples are investigated. Compared with the pristine sample, the coated materials both demonstrate superior

^a College of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China.

^b College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, P. R. China.

^cPost-doctoral mobile research center of Ruyuan Hec Technology corporation, Guangdong, Ruyuan, 512000, P. R. China.

^dInstitute for Applied Materials-Energy Storage Systems, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany.

Download English Version:

https://daneshyari.com/en/article/7993729

Download Persian Version:

https://daneshyari.com/article/7993729

<u>Daneshyari.com</u>