# **Accepted Manuscript**

Annealing effect on the bipolar resistive switching characteristics of a Ti/Si<sub>3</sub>N<sub>4</sub>/n-GaN MIS device

Y.R. Chen, Z.M. Li, Z.W. Zhang, L.Q. Hu, H. Jiang, G.Q. Miao, H. Song

PII: S0925-8388(18)30074-4

DOI: 10.1016/j.jallcom.2018.01.072

Reference: JALCOM 44536

To appear in: Journal of Alloys and Compounds

Received Date: 19 October 2017
Revised Date: 4 January 2018
Accepted Date: 5 January 2018

Please cite this article as: Y.R. Chen, Z.M. Li, Z.W. Zhang, L.Q. Hu, H. Jiang, G.Q. Miao, H. Song, Annealing effect on the bipolar resistive switching characteristics of a Ti/Si<sub>3</sub>N<sub>4</sub>/n-GaN MIS device, *Journal of Alloys and Compounds* (2018), doi: 10.1016/j.jallcom.2018.01.072.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.



## ACCEPTED MANUSCRIPT

Annealing effect on the bipolar resistive switching characteristics of a Ti/Si<sub>3</sub>N<sub>4</sub>/n-GaN MIS device

Y. R. Chen <sup>a</sup>, Z. M. Li <sup>a</sup>, Z. W. Zhang <sup>a, \*</sup>, L. Q. Hu <sup>b</sup>, H. Jiang <sup>a</sup>, G. Q. Miao <sup>a</sup>, H. Song <sup>a, \*</sup>

<sup>a</sup> State Key Laboratory of Luminescence and Applications, Changehun Institute of Optics,

Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, People's

Republic of China

<sup>b</sup> College of Physics and Information Engineering, Fuzhou University, Fuzhou 350002,

People's Republic of China

\* Corresponding Author: songh@ciomp.ac.cn

#### **ABSTRACT**

In this paper, the effect of annealing on the bipolar resistive switching characteristics of a Ti/Si<sub>3</sub>N<sub>4</sub>/n-GaN metal-insulator-semiconductor (MIS) structure memristor is demonstrated. The results show that the stability and repeatability of the bipolar resistive switching are greatly improved in annealed Ti/Si<sub>3</sub>N<sub>4</sub>/n-GaN MIS devices. The mechanism involved is revealed by both conductive force microscopy (CFM) and x-ray photoelectron spectroscopy (XPS). It is confirmed to *in-situ* local Ti doping in Si<sub>3</sub>N<sub>4</sub> by thermal annealing and can be ascribed to the local Ti dopants in the Si<sub>3</sub>N<sub>4</sub> bonding the N atoms at positive bias by electro-reductive process that benefits to form stable nanoscale Si filaments. On the contrary, the Si filaments rupture by recombining with N atoms near the n-GaN side at negative bias. The proposed device is apt to integrate with a GaN-based high electron mobility transistor (HEMT) to structure a one-transistor-one-resistor (1T1R) nonvolatile memory cell, which is

### Download English Version:

# https://daneshyari.com/en/article/7993889

Download Persian Version:

https://daneshyari.com/article/7993889

<u>Daneshyari.com</u>