Accepted Manuscript

Influence of metal (W, Pd)-doping on gas sensing properties of the NiO flower-like thin films for o-xylene detection

Ghazale Khorshidi, Mahdi Behzad, Hamideh Samari Jahromi, Ebrahim Alaei

PII: S0925-8388(17)34290-1

DOI: 10.1016/j.jallcom.2017.12.106

Reference: JALCOM 44192

To appear in: Journal of Alloys and Compounds

Received Date: 15 October 2017
Revised Date: 7 December 2017
Accepted Date: 11 December 2017

Please cite this article as: G. Khorshidi, M. Behzad, H.S. Jahromi, E. Alaei, Influence of metal (W, Pd)-doping on gas sensing properties of the NiO flower-like thin films for o-xylene detection, *Journal of Alloys and Compounds* (2018), doi: 10.1016/j.jallcom.2017.12.106.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Influence of metal (W, Pd)-doping on gas sensing properties of the NiO flower-like

thin films for o-xylene detection

- 3 Ghazale Khorshidi¹, Mahdi Behzad^{1*}, Hamideh Samari Jahromi², Ebrahim Alaei²
- 1. Department of chemistry, Semnan University, Semnan 35351-19111, Iran
- 5 2. Research Institute of Petroleum Industry (RIPI), Environment and Biotechnology
- 6 Division, West Blvd., Azadi Sports Complex, P.O. Box 14665-1998, Tehran, Iran

ABSTRACT

Undoped NiO, W-doped NiO and Pd-doped NiO nanoflowers were prepared by hydrothermal, or precipitation method using NiSO₄, WCl₆ and PdCl₂ as precursor compounds. The characterizations and microstructural analyses were performed by powder X-ray diffraction (PXRD), field emission scanning electron microscopy (FESEM), and energy dispersive X-ray analysis (EDAX). Thin films of these materials were prepared and the gas adsorption properties of the prepared thin films were investigated towards o-xylene vapor. The influence of doping on o-xylene adsorption was studied. To this intent, thin films were deposited by dip-coating on quartz substrates and fixed onto the end of an optical fiber. This device worked in reflection mode, and transduction took place in the light that traveled through the core of the fiber. W-doped NiO exhibited superior performance to o-xylene compared to the other two samples. The response time, sensitivity and recovery time for undoped NiO, W-doped NiO and Pd-doped NiO thin films towards o-xylene were found as (~50 s, 0.08 and ~5 min),

*Corresponding author email: mbehzad@semnan.ac.ir, mahdibehzad@gmail.com

Download English Version:

https://daneshyari.com/en/article/7994152

Download Persian Version:

 $\underline{https://daneshyari.com/article/7994152}$

Daneshyari.com