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a b s t r a c t

Numerically simulating deformations in thin elastic sheets is a challenging problem in
computational mechanics due to destabilizing compressive stresses that result in wrink-
ling. Determining the location, structure, and evolution of wrinkles in these problems has
important implications in design and is an area of increasing interest in the fields of
physics and engineering. In this work, several numerical approaches previously proposed
to model equilibrium deformations in thin elastic sheets are compared. These include
standard finite element-based static post-buckling approaches as well as a recently pro-
posed method based on dynamic relaxation, which are applied to the problem of an
annular sheet with opposed tractions where wrinkling is a key feature. Numerical solu-
tions are compared to analytic predictions of the ground state, enabling a quantitative
evaluation of the predictive power of the various methods. Results indicate that static
finite element approaches produce local minima that are highly sensitive to initial im-
perfections, relying on a priori knowledge of the equilibriumwrinkling pattern to generate
optimal results. In contrast, dynamic relaxation is much less sensitive to initial im-
perfections and can generate low-energy solutions for a wide variety of loading conditions
without requiring knowledge of the equilibrium solution beforehand.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Thin elastic sheets are not only found abundantly in nature (Ben Amar and Dervaux, 2008), but are also used in a wide
variety of structural applications (Carbonez, 2013) because of their excellent tensional resistance-to-weight ratio. De-
termining equilibrium deformations in these structures is nontrivial as loading a thin sheet typically results in regions that
are locally tense, compressed, or slack (i.e., stress-free). In the compressed regions, wrinkles form in response to instability.
Wrinkles may be something engineers wish to avoid (e.g., in solar sails, Vulpetti et al., 2008) or perhaps something that can
be used to control membrane behavior (Vandeparre et al., 2010; Breid and Crosby, 2013). In either case, it is of great interest
to be able to determine their structure (i.e., amplitude and wavelength) and location in a sheet at a given applied loading
state.

Theoretical investigations of deformation and tensional wrinkling in thin sheets go back to the works of Wagner (1929)
and Reissner (1938). Early research focused on assuming the sheet to be perfectly flexible and using membrane theory to
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model its deformation (Mansfield, 1968; Stein and Hedgepeth, 1961). These studies formed the foundation of tension-field
theory (Pipkin, 1986; Steigmann, 1990; Haseganu and Steigmann, 1994) in which the stress field at the midplane of the sheet
is assumed to have no compressive components. Tension-field theory is the appropriate leading-order model at vanishing
thickness (Pipkin, 1986; LeDret and Raoult, 1995) and is much more tractable than shell (or higher order) models in-
corporating bending stiffness (which involve computation of the curvature and its derivatives). However, while tension-
field-theory is very useful for assessing the stress distribution and location of wrinkled regions in very thin sheets (Haseganu
and Steigmann, 1994; Taylor et al., 2014), it offers no information on the actual structure of wrinkles. Here, we call the
membrane-dominant regime where tension-field theory is valid the “far-from-threshold (FT)” parameter regime. In this
regime, the compression induced by the tensile loads is much larger than the thickness-dependent level at which a real
sheet buckles. Thus, tension-field-theory cannot describe the evolution of a real sheet, upon increasing loads, from a
bending-dominant (or ”near-threshold” (NT)) regime at the onset of wrinkling to the FT regime, at which a fully wrinkled
pattern develops.

In the last decade, several groups have attempted to develop a comprehensive framework that addresses simultaneously
the location, structure and evolution of tensional wrinkle patterns, focusing on a few basic set-ups, such as a rectangular
sheet under stretch (Friedl et al., 2000; Nayyar et al., 2011; Puntel et al., 2011; Cerda et al., 2002; Cerda and Mahadevan,
2003; Healey et al., 2013) or shear (Wong and Pellegrino, 2006a,b,c; Zheng, 2009; Diaby et al., 2006), a disk-like (King et al.,
2012) or annulus-like sheet (Bella and Kohn, 2014; Géminard et al., 2004; Coman, 2007; Coman and Bassom, 2007; Davi-
dovitch et al., 2011, 2012; Pineirua et al., 2013; Toga et al., 2013) under axially symmetric tensile loads, and a stretched-
twisted ribbon (Chopin and Kudrolli, 2013; Chopin et al., 2015). In particular, the first of these examples has attracted
considerable interest in the mechanical engineering community (Nayyar et al., 2011). Here, a rectangular-shaped sheet is
stretched where its short edges (of width W) are clamped and its long edges (of length L) are free to contract, such that a
pattern of parallel wrinkles emerges in a large portion of the sheet, away from the clamped edges. An early numerical work
(Friedl et al., 2000) has focused on the onset of wrinkles (i.e., the NT regime) in this system, and results were interpreted by
drawing analogy to the classical Euler buckling of rods. Later, Cerda and Mahadevan (2003) addressed the structure of this
tensional wrinkling pattern away from threshold (i.e., in the FT regime) by drawing an analogy to the elementary example of
uniaxially compressing a rectangular sheet on a substrate of stiffness K, which is known to exhibit parallel wrinkles of
wavelength B K( / )1/4λ ≈ , where B is the bending modulus of the sheet and K is the substrate's stiffness. The essential ob-
servation (Cerda et al., 2002; Cerda and Mahadevan, 2003) was that the presence of tension T along wrinkles of length L
induces an effective substrate of stiffness K T L/ 2= , such that the wavelength of tensional wrinkles satisfies the scaling law:

B T L( / )1/4 1/2λ ∼ .
Subsequent works by several groups, which addressed the stretched rectangular sheet, have attempted to describe the

complete evolution of the wrinkle pattern, as the tensile load is gradually increased from its threshold value to the FT
behavior addressed in Cerda and Mahadevan (2003). These studies, however, were encountered by significant difficulties:
experimental efforts to probe the onset of the wrinkling instability (Zheng, 2009) were baffled by the high sensitivity of this
system to the non-uniformity of the applied loads and the likelihood of plastic deformations on various scales; on the
theoretical front the difficulty may be attributed to the lack of analytic solutions of the stress field neither for the planar
state (necessary to describe the onset of instability and the NT regime) nor for tension field theory (which provides the basis
for analysis of the FT regime). This situation highlights the important role of numerical simulations, even in such a basic
system, as the ultimate route for a systematic study of tensional wrinkling. The computational challenge here stems from
the multi-scale nature of wrinkling phenomena, whereby the wavelength λ vanishes with the sheet's thickness, while the
size of the wrinkled region is determined by the length L of the sheet.

Recognizing the need in reliable, efficient numerical simulations, the primary purpose of this paper is to examine and
quantitatively compare the performance of some popular numerical methods for studying the key aspects of tensional
wrinkling patterns – their location, structure, and evolution as the tensile loads are being varied. This purpose dictates our
choice of case study, which is known as the Lamé problem (Timoshenko and Goodier, 1970): an annular sheet under radial
tensile loads Tin and Tout, exerted, respectively, on its inner and outer boundaries (see Fig. 1). The key advantage of the Lamé
set-up, in comparison to a stretched rectangular sheet, is the existence of analytic predictions for the location and structure
of the wrinkle pattern in both NT and FT regimes, as well as the evolution of the pattern between these parameter regimes
as the tensile loads are gradually increased. A solution to the stress distribution of the planar state, which can be found in
classical textbooks on elasticity theory (Timoshenko and Goodier, 1970), has been attributed to Lamé and has been recently
used for linear stability analysis that yields the threshold value of the tensile loads (Coman and Bassom, 2007), as well as the
location and structure of the wrinkle pattern in the NT regime. More recently, an exact solution of the tension-field theory
equations has been obtained (Coman, 2007; Davidovitch et al., 2011), allowing one to identify exactly the location of the
wrinkled zone in a very thin sheet, away from threshold.

The structure of the wrinkle pattern in the corresponding FT regime was described through a singular expansion of the
Föppl–von Kármán (FvK) equations around the tension-field-theory stress field, and the evolution from the NT and FT
regimes was characterized (Davidovitch et al., 2012). This progress provides us with nontrivial analytic results on the lo-
cation, structure, and evolution of the wrinkle pattern upon varying the tensile loads. Our hypothesis is that these results
provide our best current understanding of the energy-minimizing state for the Lamé problem. Given that the elastic energy
has many local minima, the analytical results give a basis for comparing those local minima obtained via simulation
methods.
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