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a b s t r a c t

Interactions in linear elastic solids containing inhomogeneities are examined using
integral equations. Direct and reflected interactions are identified. Direct interactions
occur simply because elastic fields emitted by inhomogeneities affect each other. Reflected
interactions occur because elastic fields emitted by inhomogeneities are reflected by the
specimen boundary back to the individual inhomogeneities. It is shown that the reflected
interactions are of critical importance to analysis of representative volume elements.
Further, the reflected interactions are expressed in simple terms, so that one can obtain
explicit approximate expressions for the effective stiffness tensor for linear elastic solids
containing ellipsoidal and non-ellipsoidal inhomogeneities. For ellipsoidal inhomogene-
ities, the new approximation is closely related to that of Mori and Tanaka. In general, the
new approximation can be used to recover Ponte Castañeda–Willis' and Kanaun–Levin's
approximations. Connections with Maxwell's approximation are established.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The problem of calculating the effective properties of linear elastic solids containing inhomogeneities has a long history,
which is well documented in recent books (Milton, 2002; Torquato, 2002). Currently, this problem can be successfully
attacked using direct numerical simulations. Nevertheless there remains a considerable interest in developing accurate and
easy-to-use approximations.

The most basic approximations for the effective properties are asymptotic solutions for dilute populations of
inhomogeneities. In those, so-called dilute approximations, elastic interactions among inhomogeneities are neglected,
simply because inhomogeneities are far apart from each other. Dilute approximations involve linear relationships between
the effective stiffness (or compliance) tensor versus the volume fraction(s) of inhomogeneities. Perhaps the best known
dilute approximation is for the effective shear modulus μd of an incompressible matrix containing randomly distributed
rigid spherical inhomogeneities (Einstein, 1906):

μd ¼ μ0 1þ5
2
c

� �
; ð1Þ

where μ0 is the shear modulus of the matrix and c is the volume fraction occupied by the spheres.
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Eshelby (1957) paved the way for a large body of work concerned with approximations applicable to composites with
moderate and large volume fractions of inhomogeneities, in which elastic interactions among inhomogeneities have to be
taken into account. Invariably those approximations are restricted to ellipsoidal inhomogeneities and involve nonlinear
relationships between the effective stiffness (or compliance) tensor versus the volume fraction. This trend was recently
challenged by Kachanov and Sevostianov (2013), who contend that it is often the case that the effective properties are more
sensitive to geometric details of the individual inhomogeneities rather than to elastic interactions among inhomogeneities.
Accordingly, Kachanov and Sevostianov advocate the need for approximations involving non-interacting non-ellipsoidal
inhomogeneities.

Kachanov and Sevostianov (2013) also emphasize that non-interacting inhomogeneities do not have to be well separated,
and therefore the corresponding approximations do not have to coincide with dilute approximations. To this end, let us
consider two alternatives to (1), both based on the assumption that inhomogeneities do not interact:

μE ¼ μ0
2

2�5c
� μ0 1þ5

2
cþ25

4
c2þ⋯

� �
: ð2Þ

and

μM ¼ μ0
2þ3c
2�2c

� μ0 1þ5
2
cþ5

2
c2þ⋯

� �
: ð3Þ

The first approximation is due to Eshelby (1957), who placed a reference inhomogeneity in a uniform stress field, and
calculated μE by equating the complementary energies of the actual and effective materials. The second approximation
is due to Torquato (2002), who extended Maxwell's (1873) approximation for conducting composites to classical elasticity.
In Maxwell's approximation, the actual and effective materials are related by equating a remote field, induced by a cluster of
actual non-interacting inhomogeneities, versus that, induced by an effective inhomogeneity. Let us mention that (1) can be
obtained following Eshelby's (1957) procedure, with the provisions that (i) the reference inhomogeneity is placed in a
uniform strain rather than stress field, and (ii) the effective shear modulus is calculated by equating the strain rather than
complementary energies.

Approximations (1)–(3) coincide to the first order in c, but their quadratic terms are significantly different. In choosing
among (1)–(3), one can easily rule out (1), simply because μd is below the lower Hashin–Shtrikman bound, which happens
to coincide with μM. The choice between μE and μM is less obvious, although one can argue that μM should be preferred since
μE breaks down at c¼2/5, which is well below the maximum volume fraction for randomly packed spheres. Also it is
intriguing that μM coincides with μMT obtained from the approximation of Mori and Tanaka (1973), in which elastic
interactions among inhomogeneities are presumably taken into account. Thus the concept of non-interacting inhomogene-
ities per se appears to be somewhat ambiguous and needs to be delineated.

In this paper, we identify two types of elastic interactions among inhomogeneities within representative volume
elements (RVEs). First, we identify direct interactions, responsible for the effective field of each inhomogeneity being
affected by its neighbors. Second, we recognize that inhomogeneities also interact with each other indirectly, because elastic
fields emitted by inhomogeneities are reflected by the specimen boundary, and those reflections contribute to the effective
fields of the individual inhomogeneities. We refer to these interactions as reflected. It may appear that the reflected
interactions are insignificant in comparison to the direct ones, and their description is far too complicated. Perhaps the
principal contribution of this paper is to demonstrate that in RVEs the reflected interaction are important and they are
straightforward to quantify. Furthermore, by neglecting the direct but not reflected interactions, one obtains simple
approximations for the effective properties of composites containing ellipsoidal and non-ellipsoidal inhomogeneities, which
compare favorably with approximations well established in the literature.

In mathematical terms, our development is strongly influenced by O'Brien's (1979) work, who derived an integral
equation applicable to both finite and infinite solids. In particular, that equation can be used for evaluating the so-called
thermodynamic limit in which the specimen size and the number of inhomogeneities tend to infinity simultaneously. As a
result, our approach has the following major advantages:

(i) It avoids convergence difficulties associated with transition from finite to infinite solids.
(ii) It is valid for any boundary conditions associated with prescribed macroscopic stresses, or strains, or their

combinations.
(iii) It yields consistent effective stiffness (L) and compliance (M) tensors, so that LM ¼ I, where I is the fourth rank

symmetric identity tensor.
(iv) Approximate expressions for the effective stiffness tensor are transparent, as they are obtained by neglecting certain

terms in the integral equation.

Following O'Brien (1979), our development is based on classical calculus. This allows us to explain better the physical
significance of various terms associated with singular integral operators.

The remainder of this paper is organized as follows. In Section 2, we define the effective elastic properties for a specimen
containing inhomogeneities. In Section 3, we develop governing integral equations for several model problems, which allow
us to delineate the mathematical structure of the direct and reflected interactions. In Sections 4 and 5, by assuming that the
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