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a b s t r a c t

In this paper, we present the effectiveness of the IRelast package for the elastic constants (ECs) of crystals
with different symmetries like Cubic, Hexagonal, Tetragonal, Orthorhombic, Rhombohedral and Mono-
clinic which are further used to investigate elastic and mechanical properties. The calculated results
confirm the usefulness of the software by reproducing consistent experimental results. The reason for
this competency is energy approach, where the calculated total ground state energy Eðy; εijÞ is used for
the calculations of the ECs. The software is also incorporated into the WIEN2K package. The purpose of
the software is to provide a theoretical tool for researchers to calculate ECs of the unknown compounds
and calculate ECs for experimentally measured ones for comparison purpose.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The elastic properties of materials are crucial for their engi-
neering, scientific and medical applications such as the elastic
strength of pillars and beams in buildings and bridges, compati-
bility of medical and dental materials with the tissues and bones of
human body and strong but light materials for planes and auto-
mobiles. Hence, elastic properties are essential for the applications
of materials and they can be easily evaluated by using the elastic
constants. Density functional theory (DFT) is a very successful
theoretical tool for the calculation of elastic constants of solids.

DFT has emerged as a very powerful technique for solving many
body problem using KohneSham (KS) equations [1e4]. Exchange-
correlation functional poses a question mark on the precision of
DFT as its exact form is unknown [5]. Therefore, selection of
exchangeecorrelation functional is of great importance in DFT.
Different approximations are used for exchangeecorrelation

functional to reach accurate results [6e11]. The accuracy of DFT can
be seen from the statistics that of the top three most cited physi-
cists, the first (Perdew: 65757 citations) and third (Becke: 62581
citations) are density-functional theorists [12]. The top three most
cited physics papers, and eight of the top ten, are in the field of DFT
[13,14]. DFT is used to calculate many physical and chemical
properties of solids and one of them is elastic compliance constants
or simply elastic constants (ECs).

Elastic constants play key role in defining materials properties
and show their response when exposed to the external forces
[15e18]. Elastic constants provide a connection between the atomic
and the large-scale world [19e21]. Therefore, the validity of
microscopic and macroscopic theories can be tested by comparing
evaluated ECs with the experimental results. Using the elastic
stability criteria, ECs can be used to differentiate elastic from plastic
regimes [20,22,23]. Different physical properties like hardness,
Voigt's modulus, Reuss's modulus, Hill's modulus, shear modulus,
Young's modulus, bulk modulus, elastic stiffness coefficients,
Poisson's ratio, and melting temperature are calculated using ECs
[24]. Similarly, phonon dispersion spectrum, entropy, thermal
expansion coefficient, and other thermodynamic properties are
related to the ECs as well [25e27]. Sound velocities in different
directions and as a result Debye temperature are also calculated by
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the ECs [28,29]. Moreover, ECs are also used to calculate elastic
anisotropy ratio, which explains phase stability of crystal structures
[30].

Since many of the DFT codes do not have facilities for the elastic
constants of different types of crystals, therefore in this article we
discuss the effectiveness of our in-house software, IRelast package,
developed by M. Jamal. The article discusses the use and effec-
tiveness of the software for different symmetries of crystals. The
software is already integrated in 2014 to the WIEN2K, which is one
of the most commonly used DFT codes. The IRelast package effec-
tively calculates elastic properties of crystals with different sym-
metries based on the second order derivative of energy vs. strain at
zero-strain.

2. Theoretical background

Elastic constants, which distinguish elastic from plastic regimes,
are derived using two different methods. One method is called
energy approach discussed by Stadler [31] in which calculated total
ground state energy Eðy; εijÞ, is used for calculating ECs. Nielsen and
Martin [32] propose another method called stress theorem in
which relation between sij and εij or vice versa is used for calcu-
lation of ECs. Here y represents volume V of the material under
pressure (strain) while sij and εij represent elements of stress and
strain respectively [24]. We used the first method to implement
IRelast package. Consequently, we used IRelast package as inter-
faced to the WIEN2k code [33] within the ab initio FP-(L)APW þ lo
method [34] to calculate the elastic constants of different sym-
metries. For calculation of ECs, we need appropriate strains for
different symmetries which are not proposed by energy approach
therefore, we try to use suitable strains for each symmetry. Natu-
rally, these strains put a big question mark on the accuracy of the
calculated elastic constants therefore; we compared our results
with the experimental results in last section. The comparison
shows that the results of IRelast package based on the energy
approach are in very good agreement with experimental data for
different symmetries.

Energy of strained system by a Tailor series expansion for small
distortion in the regime of Hooke's law can be written as:

EðV ; εkÞ ¼ E0 þ V0
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where εk represent ε1; ε2;…ε6, EðE0Þ is the energy and VðV0Þ is the
volume of strained (unstrained or reference) system. If the strain
causes no changes in the volume of the optimized crystal the linear
terms vanish because our crystal in equilibrium condition is free of
strain. According to the above equation elastic constants (Cij) or
linear terms of elastic constants (for example C11-C12 or C11þ2C12)
can be derived by using the second order derivative of equation (1)
at zero-strain:
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The above method which calculates elastic constants using the
calculated total ground state energy of the distorted system known
as the energy approach discussed by Stadler et al. [31] and Wen
et al. [35].

If we imagine the bravais lattice vectors of reference structure as
a matrix form R the distortion of the lattice R0 is represented by
multiplying R with a symmetric ðεxy ¼ εyxÞ distortion matrix, i.e.
R0 ¼ R� D which is written as,

D ¼ I þ ε ¼
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where I is unique matrix and ε represents the symmetric strain
tensor. x,y and z are Cartesian indices. In order to reduce the
number of indices, it is often convenient to change to the Voigt
notation as in Voigt notation we convert xx/1, yy/2, zz/3, zy
(and yz)/4, xz (and zx)/5, xy (and yx)/6,
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Since different symmetries have different independent elastic
constants, we need different strains to determine these elastic
constants. These different strains based on the Voigt notation along
with the second order derivative of energy vs. strain at zero-strain
have been presented in the following table.

ECs are used to calculate different mechanical properties. Shear
modulus, SH, as per Hill's average [36] consists of Voigt, SV and
Reuss, SR [37] values which are calculated using ECs. Shear modulus
is measure of resistance to reversible deformation upon shear
stress [38] and following equations describe SV, SR and SH.

SV ¼ 1
5
½ðC11þC22þC33Þ� ðC12þC13þC23Þþ3ðC44 þC55 þC66Þ�

(5)

SR ¼ 15½4ðS11 þ S22 þ S33Þ � 4ðS12 þ S13 þ S23Þ
þ3ðS44 þ S55 þ S66Þ��1 (6)

SH ¼ 1
2
ðSV þ SRÞ (7)

where Cij and Sij denote the elastic constants and elastic compli-
ances, respectively. Similarly, Bulk modulus, B, which shows the
response of a material to the uniform hydrostatic pressure, can be
calculated from the following equations:

BV ¼ 1
9
½ðC11 þ C22 þ C33Þ þ 2ðC12 þ C13 þ C23Þ� (8)

BR ¼ ½ðS11 þ S22 þ S33Þ þ 2ðS12 þ S13 þ S23Þ��1 (9)

BH ¼ 1
2
ðBV þ BRÞ (10)

The ratio of bulk modulus to shear modulus (B/S) can be used to
analyze the ductile or brittle behavior of a material [39]. If B/S ratio
is greater than 1.75, then the material will be considered as a
ductile otherwise it will be of brittle nature. Using Bulk modulus
and shear modulus, we can calculate Young's modulus and Pois-
son's ratio as per following equations:

E ¼ 9BS
3Bþ S

(11)
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