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a b s t r a c t 

A post-processing methodology to evaluate stresses at the macro level is presented. The methodology 

involves homogenization of a Representative Volume Element (RVE) or Unit Cell at the micro level by 

means of control nodes, with the consequence that numerical integration in the domain is not needed. 

This can be employed in cases of infinitesimal or finite strains; elastic, hyper-elastic or elastic-plastic ma- 

terials under quasi-static processes. The paper shows that evaluation of stresses or material properties 

can be done in a RVE of simple shape, such as a prism, or in a RVE of complex shape, such as a trun- 

cated octahedron, using the proposed methodology. Use of the methodology is illustrated for cases under 

various conditions, for which comparison with independent results shows excellent agreement. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

Modeling of heterogeneous materials in terms of their mi- 

crostructural characteristics, including volume fraction of each con- 

stituent, type and shape of inclusions, internal defects, is carried 

out at present by means of micro-mechanics ( Nemat-Nasser and 

Hori, 1999 ). At least two scales are considered: a microscopic 

scale, in which details of the microstructure are represented, and a 

macroscopic scale in which an homogeneous material is consid- 

ered to represent the heterogeneous properties by means of an 

equivalence. The region of heterogeneous material at the micro 

level necessary to capture the macroscopic behavior is taken as a 

Representative Volume Element (RVE) or a Unit Cell (UC), and an- 

alytical or numerical procedures are employed next to model the 

behavior at a macro level. 

Computational Micro Mechanics (CMM) takes advantage of 

computational procedures to represent details of behavior which 

would not be accessible by analytical techniques ( Zohdi and Wrig- 

gers, 2008 ); however, the cost of employing CMM in two-scale 

problems is the need to employ large computer resources, so that 

there are motivations to reduce computational cost whenever pos- 

sible. Homogenization is a key ingredient in CMM modeling and 

improvements in this part of the process may yield considerable 

improvements in performance. 
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Homogenization is commonly employed in two steps of the 

modeling process: (a) the approximate solution of the boundary 

value problem by means of numerical methods; and (b) the post- 

processing of results to evaluate variables of interest at the macro 

level, such as stresses, elastic properties, etc. This work focuses on 

the second stage, i. e. the post-processing homogenization. 

Homogenization post-processing may be oriented to compute 

stresses at the macro level based on micromechanics information. 

For small strains, the usual definition of macro stress is given by 

Nemat-Nasser and Hori (1999) 

σ = 

1 

V 

∫ 
V 

σ m dV (1) 

where σ is the stress at the macro level; σm is the Cauchy stress in 

the RVE; and V is the volume of the RVE. Index m on top of a vari- 

able indicates that it belongs to the microscopic scale. A similar ex- 

pression is employed for large strains, but integration is performed 

on the current configuration rather than the initial configuration, 

as discussed in de Souza-Neto and Feijóo (2008) . 

Within the context of small strain problems, the definition of 

the macroscopic stress emerges, after Gauss theorem is used, in 

the form 

σ = 

1 

V 

∫ 
∂V 

X � t dS (2) 

where ∂V is the boundary of the RVE; X is the coordinate of a 

point at ∂V ; t is the traction vector in ∂V . The Cartesian com- 

ponents of the tensor product between two vectors a and b are 
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written as 

[ a � b ] i j = a i b j (3) 

Numerical implementation of Eq. (1) may be performed for in- 

finitesimal strains, as explained by Barbero (2013) , or for finite 

strains, as discussed by Abadi (2010) and Guo et al. (2014) , among 

others. 

Zahr-Viñuela and Pérez-Castellanos (2011) implemented two 

homogenization processes in the evaluation of macro stresses with 

finite strains, identified by the authors as “external measure” and 

“internal measure”. Macroscopic stresses are evaluated in the first 

case by means of a force which is applied to a control node di- 

vided by the actual cross area. In the internal measure, the integral 

in Eq. (1) is approximated as 

σi j = 

1 

v 

N ∑ 

k =1 

σ k 
i j v k (4) 

where σ k 
ij is the ij component of the microscopic Cauchy tensor at 

the k Gauss point in the element used in the discretization of the 

RVE; v k is the weight factor for numerical integration (in terms of 

volume in the current configuration associated with Gauss point k ) 

for a mesh with N Gauss points; and v is the volume in the current 

configuration of the RVE. All these variables depend on time. 

An alternative formulation for finite strains has been presented 

by Dijk (2015) for computational homogenization based on virtual 

work and the Hill-Mandel Principle for periodic boundary condi- 

tions. Dijk employs Lagrange multipliers so that the stress mea- 

sures at macro level become conjugate forces of the macro strains, 

or vice versa; this formulations is limited to RVE with periodic 

boundaries 

The computation of macro stresses by means of a simple equa- 

tion was reported by Li and Wongsto (2004) , based on an energy 

equivalence between micro and macro scales (Hill-Mandel con- 

dition, see Nemat-Nasser and Hori, 1999 ). The studies in Li and 

Wongsto (2004) were applied to particle-reinforced composites, for 

RVE with shapes adequate to model different packaging configura- 

tions of particles. In the mid-1990s, Sun and Vaidya (1996) pre- 

sented a similar idea but did not apply their methodology to 

complex shapes. In both Li and Wongsto (2004) , and Sun and 

Vaidya (1996) the problem was formulated for infinitesimal strains. 

A methodology for post-processing stresses is presented in 

this work for finite strains; this is abbreviated as PPM-FS (Post- 

Processing Methodology for Finite Strains) and should be applica- 

ble to linear as well as to nonlinear problems. The goal is to deal 

with UC problems with internal cracks in contact including ma- 

terial nonlinearity, i.e. plasticity or hyper-elasticity, and geometric 

nonlinearity. Complex RVE shapes are also of interest, such as a 

truncated octahedron. 

Notice that economies in time and computational cost may be 

small with respect to the time required to solve the RVE; however, 

the present methodology avoids the complexities associated with 

numerical integration. 

2. Post-processing methodology 

2.1. Geometry of unit cells considered 

Two types of UC shown in Fig. 1 are investigated in this work: 

A prism having a parallelogram with equal sides at the base; and 

the truncated octahedron. The latter case has been employed in 

the literature to represent particle-reinforced composites ( Li and 

Wongsto, 2004 ), crystalline structures ( Delannay et al., 2006 ), 

and open cell materials such as metal foam ( Dharmasena and 

Wadley, 2002 ). In the present research both RVE geometries are 

used to model a composite material reinforced with unidirectional 

fibers. 

Periodicity vectors, as described for example in 

Oller et al. (2005) , are here employed to model the microstructure 

in a periodic material. Three periodicity vectors are used for a UC, 

as shown in Fig. 1: For the prismatic UC, these vectors are 

P1 = l f i ; P2 = 2 b j ; P3 = 2 b cos ( θ ) j + 2 b sin ( θ ) k (5) 

where lf is the fiber length; and θ and b are shown in Fig. 2 a. The 

relation of θ and b with Vf (fiber volume fraction) may be written 

as 

b = R f 

√ 

π

4 V f sin ( θ ) 
(6) 

were Rf is the fiber radius. For the truncated octahedron, the peri- 

odicity vectors are 

P1 = l f o i ; P2 = 

l f o 

3 

i + l f o 

√ 

2 

3 

j + 

√ 

2 

3 

l f o k ;

P3 = 

2 

3 

l f o i + 

2 

√ 

2 

3 

l f o k (7) 

where lf o is the fiber length, computed in terms of length le shown 

in Fig. 2 

l f o = 

√ 

6 l e ; with l e = R f 

√ 

π
√ 

3 

8 V f 
(8) 

2.2. Periodic boundary conditions under finite strains 

Periodic Boundary Conditions (PBC) have been described in the 

literature on computational micro-mechanics, such as Guo et al. 

(2007, 2014 ) and Abadi (2010) , and were used in this work to rep- 

resent a periodic composite at finite strains. Following the nomen- 

clature adopted in Zahr-Viñuela and Pérez-Castellanos (2011) , two 

points in a microstructure are identified as “corresponding points”

if the position of one of them may be obtained as the position of 

the other one plus a linear combination of the periodicity vectors 

using integer coefficients. To illustrate the concept, periodicity vec- 

tors P 1 and P 2 are shown in Fig. 3 . The points in pairs: (C 0 ; C 1 ), 

(C 0 ; C 2 ) and (C 0 ; C 3 ) are corresponding points. 

The boundary conditions are relations involving the forces and 

displacements at the boundary of the cell ( Guo et al., 2007, 2014 ). 

If the traction vector at a boundary point and its corresponding 

boundary point are t + y t − respectively, then the following condi- 

tion should be satisfied at all boundary pairs of points 

t + = −t − (9) 

Assuming that the locations at a boundary point, in the actual 

configuration, are written as x + and at its corresponding point as 

x −, then the condition 

x 

+ − x 

− = F ( X 

+ − X 

−) (10) 

applies at all boundary points ( Guo et al., 2014, Eq. (9) ), where X 

+ 
and X 

− are the locations of the points in the reference configura- 

tion; and F is the imposed macroscopic deformation gradient. 

Eq. (10) is next written as a function of nodal displacements at 

the boundary in order to facilitate implementation in the general 

purpose finite element package ABAQUS (2009) by means of com- 

mand termed ∗EQUATION. The deformation gradient can be writ- 

ten as 

F = ∇U + I (11) 

where ∇U is the macroscopic displacement gradient in the refer- 

ence configuration; and I is the identity tensor. The components of 

operator ∇ are 

[ ∇ ( ·) ] i j = 

∂ ( ·) i 
∂ X j 

(12) 
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