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a b s t r a c t 

The surface effect in the bending of nanowires (nanobeams), including cantilever nanowires and fixed- 

fixed ones, is investigated in this paper with a recently developed elastic theory for nanomaterials, in 

which only the bulk surface-energy density and the surface-relaxation parameter are involved as two 

independent parameters to characterize the surface effect. Closed-form solutions of the maximum deflec- 

tion and the effective elastic modulus in both kinds of nanowires are achieved. It is found that, com- 

paring to the prediction of the classically elastic beam theory, the cantilever nanowire is softened, while 

the fixed-fixed one is stiffened by the surface effect in nanoscales, consistent well with the existing ex- 

perimental measurements. Furthermore, an increasing aspect ratio of nanowires can further enhance the 

stiffening behavior of fixed-fixed nanowires and the softening behavior of cantilever ones, respectively. 

The present result should be helpful not only for explaining different surface effects in nanowires with 

different boundary conditions, but also for the design of nano-structures and nano-devices related to 

nanowires. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

The mechanical property of nanowires has attracted consider- 

able interests due to their potential applications in nanostructures 

and nano-devices, such as sensors and resonators in nano-electro- 

mechanical systems ( Craighead, 20 0 0; Xie et al., 2012 ) and rein- 

forcing phases in advanced nanocomposites ( Lee et al., 2011; Gong 

et al., 2013 ). Similar to the other nanomaterials, nanowires have 

a size-dependently mechanical behavior due to a large surface-to- 

volume ratio ( Liang and Upmanyu, 2005 ). 

Static bending experiment has been widely adopted to explore 

the surface effect (size effect) in nanowires’ elastic properties. The 

effective elastic modulus of fixed-fixed nanowires is found to in- 

crease with a decreasing diameter of nanowires ( Cuenot et al., 

2004; Chen et al., 2006; Jing et al., 2006; Tan et al., 2007; Chan 

et al., 2010; Celik et al., 2011 ). While for cantilever nanowires, the 

effective elastic modulus has an oppositely size-dependent behav- 

ior ( Nam et al., 2006; Gavan et al., 2009; Sadeghian et al., 2009, 

2010 ). All these experimental results provide us a direct under- 

standing of the surface effect (size effect) in nanoscales. 

Similar to the size effect in micro-scaled beam bending, which 

can not be predicted by the classical continuum mechanics, but 

depends on the strain gradient (for examples, Fleck and Hutchin- 

son (1993, 1997) ; Gao et al., (1999); Chen and Wang (20 0 0) ; 
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Gao and Huang, (2001); Chen and Wang (2002) , the classical 

beam theory is also invalid to predict the bending behavior of 

nanowires. Therefore, an elastic theory considering the surface ef- 

fect (also addressed as size effect in nanoscales) in nanomateri- 

als should be developed. Fortunately, based on the framework of 

the surface elasticity theory ( Gurtin and Murdoch, 1975, 1978 ), 

many investigations on the size-dependently elastic behavior of 

nanowires have been carried out. Steigmann and Ogden (1997) and 

Chhapadia et al. (2011) introduced a surface flexural stiffness 

into the Gurtin–Murdoch (G-M) model in order to describe the 

curvature-dependent surface energy of bending nanowires. A sim- 

ilar method was also adopted by Chiu and Chen (2011) . He and 

Lilley (2008) applied a generalized Young–Laplace (Y-L) model pro- 

posed by Wang and Feng (2007) to study the static bending behav- 

ior of nanowires, in which the effect of surface stress induced by 

a curvature was taken into account. Wang et al. (2010) modeled a 

bending nanowire as a core-shell composite system, which consists 

of a surface elastic layer and a core part. Song et al. (2011) im- 

proved the Y-L model by considering the in-plane surface stress 

tangential to the side surface of nanowires. Li et al. (2014) ex- 

tended the Y-L model to the Timochenko nanobeam case. In ad- 

dition, the molecular dynamics simulation method, as a major nu- 

merical approach, was also adopted to study the bending behavior 

of nanowires ( Park et al., 2005; Chhapadia et al., 2011; Moham- 

madi and Sharma, 2012; Georgakaki et al., 2014 ). 

The surface elasticity theory as well as its extensions has be- 

come a unique and popular model to investigate the surface effect 
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Fig. 1. Schematic of a surface unit cell in the initial (reference), relaxed and current configurations, where a local coordinate system (1, 2) coincides with the two bond 

directions. 

in the mechanical behavior of nanowires. However, almost all the 

researchers can not avoid looking for the surface elastic constants 

involved in the surface elasticity theory, in order to give a pre- 

cise comparison with the experimental result. Such a process is 

challenging because no experiment is valid to measure the surface 

elastic constant till now. Only a few molecular simulations can pro- 

vide some numerical data ( Miller and Shenoy, 20 0 0; Shenoy, 20 05; 

Mi et al., 2008; Chhapadia et al., 2011 ). Some physical problems of 

how to achieve the surface elastic constant in molecular simula- 

tions still exist and many factors will show significant influences 

on the numerical data. For example, how many atomic layers in 

a numerical model should be chosen as the surface of nanoma- 

terials? Is the calculated surface elastic constant affected by the 

size of the numerical model or the potential energy function? The 

computational model is atomically continuous in molecular simu- 

lations, but an interruption exists between the surface layer and 

the inside part in most of the theoretical models. Furthermore, a 

negative value of the surface elastic constant is often found in the 

molecular simulations ( Shenoy, 2005; Mi et al., 2008 ). 

In view of the above problems, a new theory for nanomaterials 

has been developed recently within the framework of continuum 

mechanics ( Chen and Yao, 2014 ), in which the surface elastic con- 

stant is no longer involved. Instead, a surface-induced traction to 

characterize the surface effect in nanomaterials is derived, which 

depends only on the Eulerian surface-energy density. Considering 

the relationship between the Eulerian surface-energy density and 

the Lagrangian one yields that only two kinds of material con- 

stants are needed in the new elastic theory, i.e., the bulk surface- 

energy density and the surface-relaxation parameter. The former is 

the surface energy density of a bulk solid while the latter is the 

ratio of the surface lattice length after and before a spontaneous 

surface relaxation ( Ouyang et al., 2006; Chen and Yao, 2014 ). 

In the present paper, the new theory is further used to ana- 

lyze the surface effect in the bending of nanowires. Both a can- 

tilever nanowire and a fixed-fixed one are investigated, in which 

closed-form solutions of the bending deflection and the effective 

elastic modulus of nanowires are given. Comparison of the theo- 

retical prediction and the experimental result is carried out. The 

stiffening and softening mechanisms of nanowires with different 

boundary conditions are further discussed. 

2. Brief introduction of the elastic theory for nanomaterials 

An elastic theory to characterize the surface effect in nanoma- 

terials was proposed by Chen and Yao (2014) recently, which was 

based on the surface energy density of nanomaterials. Assuming 

that a nano-solid has an idealized crystal structure, the initial state 

is regarded as a reference configuration, which will transform into 

a current one under an external loading. A Lagrangian coordinate 

system is attached to atoms on the surface with principal axes 1 

and 2 parallel to the two basic vectors of a surface unit cell as 

shown in Fig. 1 ( Nix and Gao, 1998 ). a 01 and a 02 represent lat- 

tice lengths in the two principal directions, respectively. β denotes 

an angle between the two basic vectors. Due to a spontaneous 

surface relaxation, two lattice lengths become a r 1 and a r 2 , respec- 

tively. Both of them further change to be a 1 and a 2 in the current 

configuration when an external loading is added on the nano-solid. 

The potential energy function � of the nano-solid in the cur- 

rent configuration can be written as 

�(u ) = 

∫ 
V −S 

ψ(ε) d V + 

∫ 
S 

φd S −
∫ 

V −S 

f · u dV −
∫ 

S p 

p · u d S (1) 

where ψ is the elastic strain energy density, φ is the Eulerian 

surface-energy density in the current configuration, f and p are the 

body force and external surface traction, respectively. u and ɛ are 

the displacement and strain induced by f and p . V and S denote 

the volume and the surface of the nano-solid. 

The variation analysis of Eq. (1) yields the following equilibrium 

equation and stress boundary conditions, { 

σ · ∇ + f = 0 ( in V − S) 
n · σ · n = p · n − γn n ( on S) 
(I − n � n ) · σ · n = (I − n � n ) · p − γt ( on S) 

(2) 

where σ is the bulk Cauchy stress tensor, ∇ is a spatial gradient 

operator in the current configuration, n is the unit normal vector 

perpendicular to the surface S of the nano-solid, I is a unit tensor; 

γ n and γ t are the normal and tangential components of an addi- 

tionally surface-induced traction vector, respectively, which charac- 

terizes a force disturbance at boundaries due to the surface effect. 

Based on an infinitesimal element, the virtual work method yields 

the surface-induced traction as ( Chen and Yao, 2014 ), 

γt = ∇ s φ, γn n = φ
(

1 

R 1 

+ 

1 

R 2 

)
n = φ(n · ∇ s ) n (3) 

where ∇ s is a surface gradient operator in the current configura- 

tion, R 1 and R 2 are the two principal radii of curvature of a curved 

surface. 

Relation between the Eulerian surface-energy density φ and the 

Lagrangian surface energy density φ0 satisfies 

φ = 

φ0 

J s 
(4) 

where J s is a Jacobean determinant characterizing the surface de- 

formation from the reference configuration to the current one. Eq. 

(4) can also be found in Nix and Gao (1998) and Huang and Wang 

(2006) . 

Thus, the equilibrium equations can be rewritten as ( Chen and 

Yao, 2014 ), ⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

σ · ∇ + f = 0 ( in V − S) 

n · σ · n = p · n − φ0 (n · ∇ s ) 

J s 
( on S) 

(I − n � n ) · σ · n = (I − n � n ) · p + 

φ0 ( ∇ s J s ) 

J 2 s 

− ∇ s φ0 

J s 
( on S) 

(5) 
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