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a b s t r a c t 

Size-dependent crystal plasticity of metal single crystals is investigated using finite-element method 

based on a phenomenological crystal-plasticity model, incorporating both first-order and second-order 

effects. The first-order effect is independent of the nature of the loading state, and described by three 

phenomenological relationships based on experimental results. The second-order effect is considered in 

terms of storage of geometrically necessary dislocations, affected significantly by the loading state. The 

modelling approach is shown to capture the influence of loading conditions on the sample size effect 

observed in compression and bending experiments. A modelling study demonstrates the subtleness and 

importance of accounting for first-order and second-order effects in modelling crystalline materials in 

small length-scales. 

Crown Copyright © 2016 Published by Elsevier Ltd. All rights reserved. 

1. Introduction 

It is well known that metallic single crystals at the micron and 

submicron scale exhibit different mechanical behaviour in compar- 

ison to its bulk counterpart. In almost all experimental studies, the 

phenomenon of ‘smaller is stronger’ has been observed (see e.g. 

Greer and De Hosson, 2011 ). From a classical standpoint, the sam- 

ple size effect is typically described by a power-law relationship 

(similar to the Hall-Petch effect), σ f = σ0 + K d −n or σ f = K d −n , 

where σ f is the measured flow stress, d is the characteristic sam- 

ple size, and σ 0 , K and n are experimentally fitting parameters 

( Hug et al., 2015 ). For different single crystals, experimental results 

obtained by micro-pillar compression show that n is typically in 

the range of 0.6–1.0 for FCC metals and 0.5 or less for BCC met- 

als ( Tarleton et al., 2015 ). Experimental data for HCP metals indi- 

cate that n is ∼0.5 for prismatic slip in Ti ( Sun et al., 2011 ), 0.8 

( Ye et al., 2011 ) or 0.4 ( Byer and Ramesh, 2013 ) for basal slip and 

0.2 for pyramidal slip in Mg ( Byer and Ramesh, 2013 ). Apart from 

the size-dependent strengthening effect, a size-dependent soften- 

ing was also reported when a reverse loading was applied on the 

cantilever-beam of single-crystal copper ( Demir and Raabe, 2010 ). 

Although the sample size effect of single crystal is exper- 

imentally described by the power-law relationship, the under- 

lying physical mechanism driving size effects is still debated. 

Geers et al. (2006 ) categorized the size effect in polycrystalline 
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metals into (i) intrinsically first-order effect, which was consid- 

ered to cover all effects resulting from the nature of microstruc- 

ture and (ii) second-order effect, 1 which was considered to re- 

sult from gradients of deformation (strain gradient, slip gradient, 

etc.). We adopt a similar classification in this paper for single- 

crystal metals. In a single-crystal sample, as there is no microstruc- 

tural feature related to grain boundary and the heterogeneity 

of grains, the first-order effect can be determined from several 

dislocation-mediated mechanisms, including source-limitation, dis- 

location starvation and source-truncation hardening mechanisms, 

amongst others ( El-Awady, 2015; Kiener et al., 2006 ). The second- 

order effect mainly originates from inhomogeneous plastic defor- 

mation or slip gradient in a single-crystal sample (e.g. due to 

bending). 

Due to the different underlying physical mechanisms, a quan- 

titative difference may be observed for the sample size effect 

measured in different loading conditions. For example, when the 

power-law relationship is employed to characterize the sample size 

effect in a Cu single crystal, the measured n is about 0.4 for micro- 

pillar compression ( Kiener et al., 2006 ) and 0.8 for cantilever beam 

experiments ( Motz et al., 2005 ). In Ti, the value of K for pris- 

matic slip is about 131 Pa-m from micro-pillar compression tests 

( Sun et al., 2011 ) but 354 Pa-m from cantilever-beam experiments 

( Gong and Wilkinson, 2011 ), although the values of σ 0 and n are 

comparable for the two loading conditions. These experimental 

data indicates that the sample size effect in bending, due to the 

1 Not to be confused with higher order (gradient) theories. 
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coexistence of first-order and second-order effects (i.e. externally 

imposed stress/strain gradients), is more pronounced than that in 

uniaxial compression where first-order effect dominate. Here, the 

dependence of size effect on loading conditions cannot be depicted 

by the popular power-law relationship. Moreover, the experimen- 

tal results of Maass et al. (2009 ) indicate that the power-law rela- 

tionship based on flow stress could overestimate the true size ef- 

fect due to the influences of boundary constraints on the measured 

hardening behaviour. Consequently, the simplified power-law rela- 

tionship is incomplete (or incorrect) in describing size effect, espe- 

cially when both first-order and second-order effects dominate. 

To overcome the drawback of the power-law relationship ap- 

proach, crystal-plasticity (CP) modelling was employed to help ex- 

tract the nature of size effect in single-crystal metal ( Gong and 

Wilkinson, 2011; Raabe et al., 2007 ). From a modelling perspec- 

tive, the first-order effect is typically modelled using conventional 

CP based constitutive models, which suffer from several short com- 

ings. The second-order effect may be described by strain-gradient- 

based model ( Geers et al., 2006 ). In a CP modelling framework, the 

second-order effect was general modelled as plastic strain gradient 

( Roters et al., 2010 ). The non-uniform plastic deformation was gen- 

erally associated with the storage of geometrically necessary dislo- 

cations (GNDs) in contrast to statistically stored dislocations (SSDs) 

that is considered independent of plastic strain gradient ( Faghihi 

and Voyiadjis, 2012 ). Size-dependent work-hardening will become 

significant when the storage of GNDs is comparable to SSDs, lead- 

ing to the second-order effect. Such a strain-gradient effect, asso- 

ciated with GNDs, has been introduced into CP model by two ap- 

proaches. One is based on high-order CP theory that requires addi- 

tional boundary conditions which are difficult to determine phys- 

ically ( Reuber et al., 2014 ). The other being a lower-order strain- 

gradient CP theory, where the storage of GNDs are introduced into 

the evolution of SSDs and calculation of slip-system resistance ( Ma 

et al., 2006 ). 

Our primary goal is to characterize both the first-order and 

second-order effects in small-scale single crystals using a CP the- 

ory. Three phenomenological relationships are proposed to de- 

scribe the first-order effect based on micro-pillar compression 

experiments and discrete dislocation dynamics (DDD) simulation 

studies. A low-order strain-gradient CP approach is adopted to in- 

troduce the second-order effect in the current study. Contribu- 

tions of the second-order effect, in addition to the first-order one, 

are estimated from cantilever-beam experimental data. Numerical 

studies show that the proposed modelling framework is capable to 

characterise size effects under macroscopically homogeneous and 

in-homogeneous loading states. 

The paper is organized as follows: in Section 2 , a self-contained 

description of the governing relations of proposed size-dependent 

CP model is presented. Section 3 comprises a finite-element mod- 

elling strategy implemented in a general commercial finite element 

software package ABAQUS. In Section 4 , results of the implementa- 

tion are presented and discussed. The paper ends with some con- 

cluding remarks in Section 5 . 

2. Constitutive description of first-order and second-order 

effects 

In this section, a phenomenological size-dependent crystal plas- 

ticity (SDCP) model is proposed, which accounts for the first-order 

and second-order effects of crystalline metals. Standard notations 

are adopted here: scalars are in italics, vectors and tensors are rep- 

resented with lower-case and upper-case bold letters. 

First, for completeness, the classical CP theory adopted in this 

study is reviewed. Deformation gradient F , can be decomposed into 

the elastic and plastic parts ( Roters et al., 2010 ), as, 

F = F e F p , (1) 

where the subscripts ‘e’ and ‘p’ denote the elastic and plastic pa- 

rameters, respectively. The multiplicative decomposition is non- 

unique. By applying the product rule of differentiation, one can ob- 

tain the rate of the total deformation gradient ˙ F : 

˙ F = ̇

 F e F p + F e ̇ F p . (2) 

Therefore, the velocity gradient L can be introduced following 

its definition L = 

˙ F F −1 , as, 

L = ̇

 F e F 
−1 
e + F e ( ̇ F p F 

−1 
p ) F 

−1 
e = L e + L p . (3) 

It is assumed that the plastic velocity gradient, L p , is induced 

by shearing on each slip system. Hence, L p is formulated as the 

sum of the shear rates on all slip systems, i.e. 

L p = 

N ∑ 

α=1 

˙ γ (α) s (α) 
� m 

(α) , (4) 

where, ˙ γ (α) is the shear slip rate on the slip system α, N is the 

total number of slip systems, and unit vectors s ( α) and m 

( α) define 

the slip direction and the normal to the slip plane in the deformed 

configuration, respectively. Furthermore, the velocity gradient can 

be expressed in terms of a symmetric rate of stretching D and an 

antisymmetric rate of spin W , as, 

L = D + W = ( D e + W e ) + ( D p + W p ) . (5) 

Using Eqs. (3) and ( 4 ), it can be deduced 

D e + W e = 

˙ F e F 
−1 
e , D p + W p = 

N ∑ 

α=1 

˙ γ (α) s (α) 
� m 

(α) . (6) 

Following the work of Huang (1991 ), the constitutive law is ex- 

pressed as the relationship between the elastic part of the sym- 

metric rate of stretching, D e , and the Jaumann rate of Cauchy 

stress, 
∇ 

σ , i.e. 

∇ 

σ + σ (I : D e ) = C : (D −D p ) , (7) 

where, I is the second-order unit tensor, C is the fourth order, pos- 

sibly anisotropic, elastic stiffness tensor. The Jaumann stress rate is 

expressed as 

∇ 

σ = ˙ σ−W e σ + σW e . (8) 

On each slip system, the resolved shear stress, τ ( α) , is expressed 

by Schmid law, 

τ (α) = ( s (α) 
� m 

(α) ) : σ. (9) 

The relationship between the shear rate, ˙ γ (α) , and the resolved 

shear stress, τ ( α) , on the slip system, α, is expressed by the power 

law proposed by Hutchinson (1976 ): 

˙ γ (α) = ˙ γ0 

∣∣∣∣τ (α) 

g (α) 

∣∣∣∣
n 

sgn ( τ (α) ) (10) 

where, ˙ γ0 is the reference shear rate, g ( α) is the slip resistance and 

n is the rate sensitivity parameter. Next, the model is developed 

to account for the first-order and second-order effects, which are 

introduced into the calculation of g ( α) . 

2.1. First-order effect 

In the absence of strain gradient, it is generally accepted that 

g ( α) is determined by the content of statistically stored disloca- 

tions (SSDs) in the component. For a single crystal at macro-scale, 

nucleation of dislocations is relatively easy ( El-Awady, 2015 ) due 

to the geographic abundance of nucleation sites. Thus, slip resis- 

tance in the macro-scale can be described by the empirical Tay- 

lor model ( El-Awady, 2015 ). However, at smaller length scales, 



Download English Version:

https://daneshyari.com/en/article/799512

Download Persian Version:

https://daneshyari.com/article/799512

Daneshyari.com

https://daneshyari.com/en/article/799512
https://daneshyari.com/article/799512
https://daneshyari.com

