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a b s t r a c t 

The article presents a constitutive model aimed at simulation of martensitic transformation induced by 

stress and plastic strain coupled with the hardening process in austenitic steels. The yield and trans- 

formation conditions are assumed to depend on back stresses evolving during plastic deformation and 

transformation processes. Their interaction affects essentially the hardening rate of a material. The ther- 

modynamic background is reviewed and applied with both free energy and dissipation functions used in 

derivation of the rules of flow, hardening and transformation kinetics. The constitutive model parameters 

are specified and next the simulation of strain hardening for monotonic and cyclic loading is presented 

for the cases of uniaxial tension-compression and for combined tension-torsion deformation programs. 

The effect of strain ratcheting is analyzed for the cases of uniaxial and combined loading. It is shown 

that the transformation process is shown to essentially reduce the ratcheting strain. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

The martensitic transformation occurs in various materials, such 

as shape memory alloys (SMA), metastable austenitic steels, low al- 

loy multiphase steels and ceramics. The transformation is induced 

by varying temperature, applied stress or by plastic strain gen- 

erated in monotonic or cyclic loading processes. These two irre- 

versible processes are coupled and essentially affect the material 

structure and its deformational response. The growth of marten- 

sitic phase generates variation of mechanical properties, such as 

enhanced hardening moduli and shape variation of cyclic hystere- 

sis loops, increased ductility and corrosion resistance, etc. Dur- 

ing the phase transformation process generated by temperature 

change, the increased coupled plastic deformation (TRIP) can de- 

velop even in the nominally elastic regime, first observed by 

Greenwood and Johnson (1965) . It was associated with the volume 

growth of the martensitic phase inducing plastic deformation in 

the weaker austenitic phase. To allow for martensite growth under 

an applied stress, the TRIP strain is also associated with orienta- 

tion along preferred directions of martensite variants, thus gener- 

ating both distortional and volumetric strains (Magee effect), see 

e.g. Magee (1966) . The stress assisted and plastic strain assisted 

transformation is the first order phase transition occurring without 

diffusion. It generates the irreversible transformation strain result- 
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ing from a lattice variant of the Bain strain and the accommodat- 

ing slip strain along the habit planes. The martensite growth in the 

thermally activated process does not exhibit the preferred orienta- 

tion of habit planes. On the other hand, the stress or strain induced 

martensite is characterized by an oriented microstructure. 

The aim of the present paper is to develop the constitutive 

model of a plastic deformation coupled with martensitic transfor- 

mation with account for isotropic and kinematic hardening, de- 

pending on both plastic strain and martensite volume fraction. The 

use of internal variables allows to simulate coupled irreversible 

processes of plastic deformation and phase transformation within 

the formalism of irreversible thermodynamics. This approach al- 

lows to specify generalized thermodynamic forces resulting from 

the Helmholtz or Gibbs free energies. Due to plastic deformation 

and transformation the rate of dissipation can then be specified 

and expressed in terms of rates of conjugate variables. The dissipa- 

tion function can then generate the dissipative forces which should 

be equal to free energy forces during the coupled process. The 

thermodynamic framework will be discussed in Section 2 and the 

constitutive model formulation will be presented in Section 3 . It is 

based on works related to the concept of coupled kinematic hard- 

ening and the total back stress composed of the terms associated 

with both plastic deformation and phase transformation, see Mróz 

and Zi ̨etek (2007) and Zi ̨etek and Mróz (2011) . Similarly, the trans- 

formation surface is introduced to specify the condition of phase 

growth, similar to loading-unloading conditions in plasticity. 
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Fig. 1. Initial transformation surfaces for two temperature values: a) biaxial tension–compression, b) combined tension or compression and torsion. 

Fig. 2. Dependence of the stress factor χ on the stress components: a) biaxial tension–compression, b) combined tension or compression and torsion. 

2. A review of thermodynamic framework 

The authors introduced the Gibbs and Helmholtz free energies 

G = G ( σ, θ, α) and H = H( ε e , θ, α) , where σ and ε e are the stress 

and the elastic strain states, θ denotes the temperature and α de- 

notes collectively material state variables. All irreversible processes 

satisfy the first and second laws of thermodynamics. 

ρ ˙ U = σ · ˙ ε − div ( q ) + r, ρ ˙ S + div 

(
q 

θ

)
− r 

θ
≥ 0 (1) 

where U = U( ε , S, α) is the internal energy, S denotes the entropy, 

q is the heat flux, r denotes the heat source and ρ is the material 

density. The Clausius-Duhem inequality ( 1 ) expressed in terms of 

the free energies takes the form: 

σ · ˙ ε − ρ ˙ H − ρS ˙ θ − q · ∇θ

θ
≥ 0 

or − ˙ σ · ε − ρ ˙ G − ρS ˙ θ − q · ∇θ

θ
≥ 0 (2) 

The dot between two tensors or vectors denotes their scalar 

product, a i j b i j = a · b and ∇ denotes the space gradient. In view 

of the Fourier heat conduction rule there is q · ∇θ ≤ 0 . Neglecting 

the last term of ( 2 ), the entropy inequality is: 

σ · ˙ ε − ρ ˙ H − ρS ˙ θ ≥ 0 or − ˙ σ · ε − ρ ˙ G − ρS ˙ θ ≥ 0 (3) 

Now, assuming that the total strain is a sum of elastic and irre- 

versible strains ε e and ε ir = ε p + ε t , where ε p and ε t are the plastic 

and transformation strains, the inequality ( 3 ) takes the form: 

σ ·
(

˙ ε 

e + 

˙ ε 

ir 
)

− ρ

(
∂H 

∂ ε 

e 
· ˙ ε 

e + 

∂H 

∂θ
˙ θ + 

∂H 

∂α
· ˙ α

)
− ρS ˙ θ ≥ 0 (4) 

or 

− ˙ σ ·
(
ε 

e + ε 

ir 
)

− ρ

(
∂G 

∂σ
· ˙ σ + 

∂G 

∂θ
˙ θ + 

∂G 

∂α
· ˙ α

)
− ρS ˙ θ ≥ 0 . (5) 

Assuming the independent variation of ε e and θ or σ and θ
during the reversible process, we obtain 

σ = ρ
∂H 

∂ ε 

e 
, S = −∂H 

∂θ
, 

ε 

e = ρ
∂G 

∂σ
, S = −∂G 

∂θ
(6) 

and the dissipation inequalities take the form: 

˙ D = σ · ˙ ε 

ir + A H · ˙ α ≥ 0 or ˙ D = − ˙ σ · ε 

ir + A G · ˙ α ≥ 0 (7) 

where 

A H = −ρ
∂H 

∂α
, A G = −ρ

∂G 

∂α
(8) 

are the generalized thermodynamic forces associated with the 

state variables. Now, ˙ D denotes the rate of mechanical dissipation 

associated with two irreversible processes, namely plastic defor- 

mation and phase transformation. Now the generalized conjugate 

forces are: { 

σ, −A H ( G ) , − 1 

θ
q 

} 

. (9) 

One of the major problems now is connected with a proper se- 

lection of state variables. In all papers the martensite volume frac- 

tion ξ is taken as one of the main parameters. However, the incu- 

bation and growth of martensite occurs during cooling below the 

temperature T = M s and during the loading process at T = M 

σ
s > M s 

with increasing stress and plastic strain. Then the isotropic marten- 

sitic structure of volume fraction ξθ can be distinguished from the 

oriented martensite structure fraction ξσ . These two state variables 

have been introduced into the form of free energy, see e.g. Leclercq 

and Lexcellent (1966), Bakker and Brinson (1997), Lagoudas et al. 

(2006) . The crystallographic martensite variants ξ (1) , ξ (2) ,…, ξ (n) 

have been introduced as state variables by Turteltaub and Suiker 

(20 06, 20 05 a, 20 05 b) and Govindjee et al. (20 02, 20 01 ). The plas- 

tic response is usually characterized by the back stress tensor and 
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