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a b s t r a c t 

The aim of this paper is to model the effective linear non-ageing viscoelastic properties of porous me- 

dia based on a micromechanical approach. A porous medium is modeled as a mixture of a viscoelastic 

matrix and pore inclusions. The Generalized Maxwell (GM) viscoelastic model is employed for both the 

solid matrix and the porous medium. The effective parameters of the viscoelastic GM rheology of the 

porous medium, which are functions of the porosity and the viscoelastic properties of the solid phase, 

are derived considering the short and long term behaviors in Laplace–Carson space (LC). They are val- 

idated against exact solutions obtained from the inverse LC transform for a simple configuration. The 

proposed method allows avoiding the complexity of the inverse LC transform in general condition. An 

application for cement with assumption of spherical pore is considered to illustrate the powerful of this 

method. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

The mechanical behavior of viscoelastic heterogeneous materi- 

als is very complex due to the coupling between the non linear 

behavior of the phases and the heterogeneity of the whole mix- 

ture. One of the methods for analysis is the homogenization of 

linear viscoelastic heterogeneous media ( Hashin, 1965 and 1970 ) 

and Christensen (1969) , which exploits the correspondence princi- 

ple between linear elasticity and linear viscoelastic ( Mandel, 1966 ). 

This principle is based on the Laplace–Carson transform, which al- 

lows to convert a linearly viscoelastic problem in the time space 

into a linearly elastic one in the transform space. This principle is 

widely used to estimate the effective properties of linear viscoelas- 

tic materials, as it allows using directly in the transformed space, 

the classical homogenization schemes, e.g., Mori–Tanaka ( Brinson 

and Lin, 1998; Friebel et al., 2006 ), self-consistent scheme ( Laws 

and McLaughlin, 1978; Hoang-Duc et al., 2013 ). Effective viscoelas- 

tic properties are then derived by inverting the Laplace–Carson 

transform. However, the later one is not easy to carry out. A few 

analytical solution in some particular cases where a limited num- 

ber of Maxwell chains are used to describe the matrix behavior 
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( Thai et al., 2014 ), otherwise this inversion is usually performed 

numerically ( Lévesque et al., 2006; Lahellec and Suquet, 2007; Tran 

et al., 2011 ; Gu et al., 2012 ). The behavior of the matrix may be 

represented by some different rheological models such as the gen- 

eralized Maxwell model ( Nguyen et al., 2015a ), the generalized 

Kelvin model ( Le et al., 2008; Nguyen, 2014 ) or the Burgers model 

( Nguyen et al., 2011 ). 

This paper presents a micromechanical approach to estimate 

viscoelastic properties of porous materials that are constituted of 

two phases: a solid phase with generalized Maxwell behavior and 

pores. One interesting feature is that the expressions for both bulk 

and shear moduli in the time space are derived without using the 

inversion of the Laplace–Carson transform. Firstly, the homogeniza- 

tion approach for equivalent elastic behavior in LC is presented. 

The Mori–Tanaka scheme is applied in the LC space to estimate the 

mechanical parameters. Secondly, the simplest case of generalized 

Maxwell model with three rheological elements is considered. The 

results obtained for this model is then extended for general case of 

n elements. Effective elastic moduli and viscosity of each element 

are explicitly derived. The approximated solutions are compared 

with exact solutions obtained for a simple configuration where in- 

verse LC transform is possible. Finally, an application for cement is 

considered to illustrate the powerful of the proposed method. 
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Fig. 1. Porous material containing two phases: a viscoelastic solid phase and pores. 

Notations 

∗: superscript stands for Laplace–Carson transform values 

o , ∞ : under or supper scripts stand for short term and long 

term behaviors 

t , p: time and Laplace–Carson variables 

τ : characteristic time 

σ , �: local and macroscopic stress tensors 

ɛ , E: local and macroscopic strain tensors 

C : stiffness tensor 

A : localization tensor 

J , K : spherical and deviatoric parts of fourth order unit tensor 

ϕ: porosity 

k , μ: bulk and shear moduli 

ν: Poisson’s ratio 

ηs, ηd: bulk and shear viscosities 

2. Theoretical background 

2.1. Homogenization approach in LC space 

A viscoelastic porous medium is modeled by a mixture of a vis- 

coelastic solid matrix and pores ( Fig. 1 ). The overall viscoelastic 

properties of such media can be obtained by considering the rela- 

tionship between the local and the overall behavior of a represen- 

tative elementary volume (REV) that are resumed by the following 

equations ( Dormieux et al., 2006 ): 

σ∗( z ) = C 

∗( z ) : ε 

∗( z ) (1) 

�∗ = C 

∗ : E 

∗ (2) 

�∗ = 

1 

| �| ∫ �
σ∗( z ) d� (3) 

E 

∗ = 

1 

| �| ∫ �
ε 

∗( z ) d� (4) 

where σ∗( z ) , ε ∗( z ) and C 

∗( z ) are the apparent local stress tensor, 

strain tensor and stiffness tensor, in LC space, at a point z inside 

the REV, respectively; �∗, E 

∗ and C 

∗ are the apparent overall stress 

tensor, strain tensor and stiffness tensor of the REV, respectively; �

is the REV and | �| is its volume. The local and the average strain 

apparent tensors are related by the following linear equation: 

ε 

∗( z ) = A 

∗( z ) : E 

∗ (5) 

where A 

∗( z ) is the apparent strain localization tensor at point z . 

The combination of Eqs. (1) –(5) yields following equation to calcu- 

late the overall stiffness tensor of the REV: 

C 

∗ = 

1 

| �| 
∫ 
�

C 

∗( z ) : A 

∗( z ) d� (6) 

In Eq. (6) , the local stiffness tensor C 

∗( z ) is assumed to be 

known, the main question is to determine the strain localization 

tensor A 

∗( z ) . Eshelby (1957) derived an analytical solution of the 

local tensor for the case of an ellipsoidal inclusion in an infinite 

homogeneous matrix. For the particular case of dry spherical pore 

Fig. 2. Rheological standard linear solid model (Zener’s model). 

inclusion, the apparent strain localization tensor in LC space, de- 

noted by A 

sph ∗, is an homogeneous isotropic fourth order tensor 

that can be decomposed into spherical and deviatoric parts using 

two scalar functions of the apparent Poisson’s ratio ν∗ of the solid 

matrix: 

A 

sph ∗ = 

3 ( 1 − ν∗) 
2 ( 1 − 2 ν∗) 

J + 

15 ( 1 − ν∗) 
7 − 5 ν∗ K (7) 

where J = 1 � 1 / 3 and K = I − J are the spherical and derivatoric 

parts of the fourth order unit tensor I , respectively; the tensor 1 

appeared in the formula of J is the second order unit tensor. 

The solution ( 7 ) obtained for a single pore (dilute scheme) does 

not take into account the interaction between the pores and then 

is applicable for the cases of small porosity. Such solutions can be 

modified using the Mori–Tanaka’s scheme that considers the pore 

interaction by managing the boundary condition of the Eshelby’s 

problem ( Mori and Tanaka, 1973; Dormieux et al., 2006 ). The solu- 

tions of the Mori–Tanaka’s scheme for a porous medium containing 

spherical pores are: 

k hom ∗

k ∗
= 

1 − ϕ 

1 + Q 

∗ϕ 

with Q 

∗ = 

1 + ν∗

2 ( 1 − 2 ν∗) 
(8) 

μhom ∗

μ∗ = 

1 − ϕ 

1 + M 

∗ϕ 

with M 

∗ = 

8 − 10 ν∗

7 − 5 ν∗ (9) 

where ϕ is the porosity. The apparent Poisson’s ratio can be cal- 

culated using the following classical relationships (as these rela- 

tionships are generic, the exponent “hom ” of the bulk and shear 

moduli is ignored to keep the formula simple): 

ν∗ = 

3 k ∗ − 2 μ∗

6 k ∗ + 2 μ∗ (10) 

It is worth noting that the choice of a homogenization scheme 

to model a composite material depends on its microstructure. For 

example Mori–Tanaka scheme is appropriate for composite mate- 

rials containing a major phase that is a connected matrix of the 

mixture while self-consistent scheme is usually employed to model 

perfectly disordered materials (e.g., polycrystals). In the present 

work, we chose the Mori–Tanaka scheme as in Section 4 we will 

apply the developed method for the case of cement that can be 

considered as a porous material made of a percolated solid matrix 

and pore inclusions. 

2.2. Standard linear solid model 

Consider a rheological model of three elements (two springs 

and one dash-pot) as shown on Fig. 2 . It is a Maxwell series in 

parallel with the second spring that defines the long term elastic 

behavior of the material. In LC space, the elastic stiffness of the 

equivalent elastic material is a function of the LC variable p and 

the viscoelastic properties of the initial material (see also Nguyen 

et al., 2011 ). For this case of three elements rheology, this depen- 

dency is expressed as: 

C 

∗( p ) = 

(
C 

−1 
M 

+ 

1 

p 
C 

−1 
v 

)−1 

+ C ∞ 

(11) 

where C M 

is the elastic stiffness tensor of the spring of the 

Maxwell series, C v the viscosity tensor of the dash-pot of the 
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