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Mobility analysis is an important task in the conceptual design stage of kinematic mechanisms.
Not like in rigid body mechanisms, identifying the mobility of compliant mechanisms is
particularly challenging as their motion is determined by both kinematic pairs and deformable
compliant joints. In this paper, we investigate the use of the eigentwist and eigenwrench
decomposition of compliance matrices to identify the mobility of spatial compliant mechanisms.
We first prove that the eigencompliances are invariant to the coordinate transformation.We then
introduce the characteristic length to scale the eigencompliances and compliance matrices to
compare translational compliances with rotational ones.We propose twomobility criteria for the
compliancematrix of any given compliantmechanism.We have also proposed two guidelines for
choosing the characteristic length for serial open chains and closed loopmechanisms respectively.
The robustness of the chosen characteristic length is discussed. A general procedure for
determining the mobility for any compliant mechanism is presented. Finally, one case study is
provided to verify our method.
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1. Introduction

A compliant mechanism [1–3] delivers motion through elastic deformation of its flexure elements upon an appropriate
load. Its benefits include no friction, no need to lubrication, compactness, and ease in manufacturability and increased
precision compared with traditional rigid mechanisms. Consequently, they are used widely in various fields such as
high-accuracy alignment devices for optical fibers, micro-gripper, scanning electron microscopy and precision manufacturing
machine.

The mobility analysis is an important task for early design stages of mechanisms. The mobility of the traditional rigid body
mechanisms can be easily identified and calculated using the well-known Glübler's formula. However Glübler's formula may fail
in many cases such as singular configurations, over constrained mechanisms, redundant constraints and so on. A more general
criterion would be using screw theory. In this area, numerous authors [4–6] have made significant contributions. Compared to
rigid mechanisms, mobility analysis of compliant mechanisms is relatively complicated as there is no clear line to identify the
degree of freedom (DOF). Howell et al. [7] presented a method to determine the DOF of the planar compliant mechanisms based
on its pseudo-rigid-body-model (PRBM). Murphy et al. [8] presented a DOF formula which is the generalization of the Glübler's
formula for compliant mechanisms. Based on the Murphy's formula, Ananthasuresh et al. [9] studied several cases and proposed a
sequence of steps for the determination of DOF. In addition, Hopkins and Culpepper [10,11] proposed a freedom and constraint
topology approach (FACT) for design of flexure mechanisms and Su [12–14] used the screw theory to analyze the mobility of
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general flexure mechanisms. However, this methodology is only qualitative in determination of degree of freedom and the
dimensions of the mechanisms are assumed to be ideal. All the above proposed approaches for the mobility analysis do not take
into account the effect of dimensions.

Compliance matrix itself can reveal the structure characteristic of a mechanism and many authors have investigated its
geometric property and its synthesis. Lipkin and Patterson [15,16] decomposed the compliance matrix using the generalized
singular eigenvalue decomposition and proposed a concept of center-of-elasticity. Patterson and Lipkin [17] described the
properties of a compliance matrix in terms of several propositions based on the eigenvalue decomposition and then they [18]
classified the compliance matrix based on the compliant axes. Besides, Huang et al. [19,20] studied the synthesis of a
compliance matrix with simple springs connected in serial or a stiffness matrix with simple springs connected in parallel and
the duality between them. Lin et al. [21] proposed a frame-invariant stiffness-based measure that is calculated from principle
stiffnesses and compliances of stiffness and compliance matrices for studying quality of compliant grasps. They have also
proposed the concept of equivalent stiffnesses for comparing translational and rotational stiffness of a grasp. Recently
Angeles [22] made the further research about the nature of the stiffness matrix based on the screw theory and the eigenvalue
problem.

In the field of compliant mechanisms, Kim [23] also apply the generalized eigenvalue decomposition to characterize basic
kinematic function of a compliant mechanism and then Krishnan et al. [24] implemented the synthesis of planar compliant
mechanisms at a given point based on the above paper. Yu et al. [25] also proposed an eigenscrew-based method to determine the
primary mobility of compliant mechanisms and the primary mobility is the linear combination of the eigenscrew. Zou and Angeles
[26] also proposed amethod to study themobility of compliantmechanisms based on the decoupling of the Cartesian stiffnessmatrix.
This method is only applicable when the stiffness matrix can be decoupled. Both papers did not study the effects of units/dimensions
on the rotational and translation DOF. Hao and Kong [27] presented a normalization-based approach to study the mobility of
compliant mechanisms composed of beams. However their method is not applicable to mechanisms composed of notches and other
mechanisms with a complicated topology.

In this paper, we seek to apply the generalized singular eigenvalue decomposition of a compliance matrix to determine the
mobility of any compliant mechanism. The novelty of this paper lies in the use of six scaled eigencompliances to determine the
number of DOF of compliant mechanisms. We also study the effects of coordinate transformation and choice of units on the mobility
analysis.

The rest of the paper is organized as follows. In Section 2, we present a review on derivation of the compliance matrix of the
compliant mechanism and its coordinate transformation. Section 3 reviews the eigentwist and eigenwrench characterization of
the compliance matrix and study the property of invariant to coordinate transformations and how the characteristic length affects
the translational eigencompliances and rotational eigencompliances. In Section 4, we present mobility criteria based on the above
properties of the eigencompliances for analyzing the mobility of flexure mechanism. Section 5 gives one case study of a
mechanism with varying DOF to demonstrate our method. This is followed by conclusions.

2. Background

2.1. Compliance and stiffness of flexures

A general flexure mechanism is formed by connecting a moving stage to the base through one or more flexure elements. The
coordinate frame ℱ is placed at the body as we are interested in the motion of the body. In this paper, we assume that the
deformation is sufficiently small and within the range of elasticity.

According to the elastic theory, the relationship between the applied wrench Ŵ and the deformation twist T̂ is

T̂ ¼ C½ �Ŵ; Ŵ ¼ K½ �T̂; ð1Þ

where T̂ ¼ θ
!T

δ
!T �T

�
, Ŵ ¼ f

!T
m!T �T

h
are both 6 × 1 vectors. The compliance matrix [C] and the stiffness matrix [K] are 6 × 6 and

[C] = [K−1] in the nonsingular case.
The work by a wrench Ŵ in the direction of the deformation twist T̂ is calculated as their reciprocal product,

T̂∘Ŵ ¼ T̂T Δ Ŵ ¼ f
!T � δ!þ m!T � θ!; ð2Þ

where Δ ¼ 0 I
I 0

� �
is so-called swap operator.

Let T̂ and Ŵ be the twist deformation and the wrench represented in the local coordinate frame ℱ. Their representation in a

new reference coordinate frame ℱ′ are denoted by T̂
0
and Ŵ

0
. They are related by

T̂ 0 ¼ Ad½ �T̂ ; Ŵ 0 ¼ Ad½ �Ŵ ð3Þ
where [Ad] is the so-called adjoint transformation matrix given by

Ad½ � ¼ R 0
DR R

� �
; ð4Þ
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