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in the analysis. For all the cases considered, explicit mathematical conditions are obtained, which
can be used to check the input link rotatability of a given Watt mechanism. Apart from being of
theoretical importance, the presented analysis is suitable for implementation within an optimization
scheme, is computationally efficient and can be utilized to ensure that the synthesized mechanism
Keywords:‘ . does not shift from one branch to another, when put to use in practice. When incorporated within an
ﬁlrsszri“:str;g:b“ity evolutionary optimization algorithm, it can be effectively used to handle the rotatability constraint.

The approach can be easily extended to Watt mechanisms containing more than one prismatic joint.

Four-bar based Watt mechanisms . .
Synthesis of mechanisms © 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Linkage mechanisms are widely used in practice for Function, Path and Motion Generation. The most commonly used
mechanism is the four-bar mechanism. Many times, however, a four-bar may not be good enough to perform a given task. In such
a situation, a six-link mechanism would be an obvious choice for the designer. All 1-DOF six-link planar mechanisms with
revolute and prismatic joints (i. e., with 1-DOF joints) are inversions of the Watt and Stephenson six-link chains [1,2]. Watt and
Stephenson six-link mechanisms are capable of motions exceeding the complexity of four-bar linkages, offer the benefits of
simple lower-pair construction, can be designed to run at higher speeds than servomechanisms, and are durable and economical
alternatives to mechanisms such as cams [3]. Many applications of Watt mechanisms, the input link rotatability of which is the
topic of investigation of this paper, have been reported in literature such as: walking beam indexer with pick and place
mechanism, washing machine agitator mechanism, approximate constant-velocity drag-link driven slider-crank, large-time-ratio
quick-return applications [1], self-turning-off mechanism, feeding mechanism [2], double-function generation [4], 11-pose
motion generation [5] and reclining chair [6]. In general, the kinematic performance of a Watt mechanism can be expected to be
at par with that of a Stephenson mechanism, since they are characterized by the same number of design variables. As a result,
a Watt mechanism can always be considered for many of the applications for which Stephenson mechanisms have been
synthesized, such as: leader type threader [2], motion generation for a backhoe [4], function generation with single dwell [7] and
complex path generation [8].

While synthesizing a mechanism, it is important to ensure that the synthesized mechanism is free from the circuit (or the branch)
defect and the order defect [1,2]. Another important practical issue that commonly needs to be addressed is the rotatability of the
input link of the mechanism, i.e., whether the input link is a crank or not. The input link rotatability of a four-bar can be analyzed by
using the well-known Grashof criterion [1]. The input link rotatability analysis of six-link mechanisms is, however, more complex. In
literature, input link rotatability of mechanisms has been studied analytically [3,9-19], more commonly from the broader perspective
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of mobility, branch, circuit and singularity analysis. Midha et al. [9] combined the concept of triangle inequality with computer-aided
graphics, to formulate the mobility conditions for the planar four-bar mechanism. The approach could be extended to study the
mobility of complex planar linkages. Krishnamurty and Turcic [10,11] presented a sub-Jacobian based method for the determination
and elimination of branching in planar multi-loop dyadic and non-dyadic mechanisms. Chase and Mirth [12] gave precise definitions
of ‘circuit’ and ‘branch’, leading to correct distinction between the two. Mirth and Chase [3] presented a quantification of circuits of all
pin-jointed planar Watt six-bar mechanisms, enabling detection of the circuit defect. Ting and Dou [13] developed a method to
identify the branches of Stephenson linkages, together with an algorithm to detect the branch defect. Foster and Cipra [14] addressed
the problem of enumeration of circuits and branches of planar single-input dyadic (SID) mechanisms, of which the Watt mechanism
is an example. Shukla and Mallik [15] specifically addressed the problem of full rotatability of the input link of six-link mechanisms
and presented explicit formulae to check the existence of a crank. Ting [16] presented the concept of input joint rotation space and
applied it to the five-bar, N-bar, multi-loop and spatial linkages. Ting et al. [17] presented the mobility analysis of the Watt six-bar
chain. The concepts of stretch and rotation were utilized to convert a Watt six-bar chain into a degenerated Stephenson six-bar chain,
enabling a unified mobility and rotatability analysis of both. Ting et al. [ 18] presented a unified approach based on the concept of joint
rotation space, for rotatability and singularity analysis of Stephenson mechanisms and geared five-bar mechanisms. Wang et al. [19]
extended the discriminant method presented in [20,21] to carry out the mobility analysis of multi-loop linkages, by algebraically
implementing the concept of joint rotation space. The approaches presented in [9,16-18] can be directly used to analyze the input link
rotatability of Watt and Stephenson six-link mechanisms.

Many researchers have presented synthesis of Watt and Stephenson six-link mechanisms [4-8,22-26], for various kinematic
tasks. However, the analytical approaches presented in [3,9-19] were not used in any of these contributions. In [4,5], the position
analysis of the candidate mechanisms was carried out for a large number of positions of the input link, to numerically check
whether the input link was a crank. In [6-8,22-26], the requirement that the input link of the synthesized six-link mechanism
should be a crank was not imposed. It should be noted that the analytical approaches presented in [3,9-19] provide a deeper
insight into the mobility, branch, circuit, singularity and rotatability aspects of mechanisms, and can be applied or extended to
more general cases of mechanisms. They are also useful in carrying out exact synthesis of defect-free mechanisms. However, these
approaches are not very convenient, if one is primarily interested in analyzing a given six-link mechanism (or a number of them)
with regard to input link rotatability. In such a case, an explicit formulation such as that presented in [15] is desirable.

In this paper, an explicit rotatability analysis is presented for four-bar based Watt six-link mechanisms. This work can be
considered to be a significant improvement upon and extension of the work presented in [15], as follows. In [15], two different
approaches were presented, depending upon whether the fixed link was a binary link or a ternary link. For one of the inversions of
Watt chain wherein a binary link is fixed, no explicit formulae were obtained. Rotatability analysis was presented for Watt
mechanisms containing only revolute joints. Finally, rotatability analysis for Watt mechanisms with binary fixed link and with the
contained four-bar (i. e. the four-bar containing the fixed and the input links) assembled in the crossed-mode was not presented.
In comparison with the analysis presented in [15], the approach presented here is uniformly applicable, irrespective of the type of
the fixed link. Watt mechanisms containing one prismatic joint are analyzed in this work. Explicit formulae for all four-bar based
Watt mechanisms having at the most one prismatic joint are obtained. This makes it possible to check the input link rotatability
without having to carry out the position analysis even once. The approach can be easily extended to Watt mechanisms containing
more than one prismatic joint. Finally, equivalence is established between Watt mechanisms with the contained four-bar
operating in the crossed-mode, and Watt mechanisms with the contained four-bar operating in the open-mode.

The organization of the paper is as follows. The main contribution of this paper is presented in Sections 2-4. In Section 2, three
categories of four-bar based Watt six-link mechanisms are defined, mechanisms belonging to these categories are enumerated and
the input link rotatability conditions are obtained for all of them. Explicit formulae for various terms that appear in the rotatability
conditions are derived in Section 3. In Section 4, the rotatability analysis for Watt mechanisms with the contained four-bar operating
in the crossed-mode is presented. In Section 5, validation and advantages of the presented approach are discussed, followed by the
conclusions in Section 6.

2. Input link rotatability conditions
2.1. Watt mechanisms considered for rotatability analysis

Fig. 1 shows a planar Watt six-link chain, from which a Watt six-link mechanism can be obtained by fixing any one of its links.
A Watt six-link chain consists of two ternary links connected to each other, four binary links and seven 1-DOF joints. Although in
Fig. 1 all the joints are shown to be revolute, some of them could as well be prismatic. From Fig. 1, it is observed that if any pair of
adjacent links of the chain is chosen as the fixed link-input link pair, it would always be contained in a four-link loop. There would
be two such four-link loops, if the two ternary links are chosen as the fixed and input links. For any other choices of fixed and
input links, there would be only one four-link loop containing the two. From this observation and from Fig. 1, it can be said that
any given Watt six-link mechanism with specified input and fixed links can be derived from a four-link mechanism containing the
fixed and input links, by adding two links and three 1-DOF joints between a pair of adjacent links of the four-link mechanism. This
process would result in a variety of Watt mechanisms, kinematically and also from the viewpoint of input link rotatability,
depending upon the nature of joints (revolute or prismatic) within the four-link mechanism, the nature and sequence of the three
joints associated with the added links and the choice of the adjacent pair of links of the four-link mechanism. From among all such
possible Watt mechanisms, the mechanisms which are derived from a four-bar (i. e., a four-link mechanism with all revolute
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