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a b s t r a c t

This paper addresses the estimation of the effective free energy of polycrystalline shape

memory alloys, in the framework of nonlinear elasticity and infinitesimal strains. The

translation method is combined with a Hashin–Shtrikman type variational formulation

to provide rigorous lower bounds on the effective free energy. Those bounds incorporate

both intra-grain compatibility conditions (resulting in a non-convex bound) and inter-

grain constraints (by taking one- and two-point statistics into account). Some examples

are given to compare the results obtained with other bounds from the literature.

& 2008 Elsevier Ltd. All rights reserved.

1. Introduction

The peculiar properties of shape memory alloys (SMAs) are associated with a diffusionless solid/solid phase
transformation between different crystallographic structures (austenite and martensite). In a polycrystalline specimen
(which is the common form of commercially produced SMAs), one typically observes the formation of martensitic
microstructures in each grain. The selection of those microstructures is notably dependent on the texture, i.e. the
distribution, shapes and orientations of the grains. Polycrystalline SMAs thus involve three different length scales, assumed
in the following to be well separated. The finest scale is the microscopic scale of microstructures formed in each grain. The
mesoscopic scale is the scale of individual grains, whereas the macroscopic scale is the scale of a polycrystalline material,
consisting in numerous grains.

To account for the phase transformation between austenite and martensite, the microscopic free energy is generally
modelled as a piecewise quadratic function, with multiple wells. The mesoscopic free energy is then obtained by relaxation
(or quasiconvexification) of the microscopic free energy. This is a difficult problem, which still remains largely open. It
essentially amounts to solve an optimal design problem, consisting in finding the geometric arrangement of austenite and
martensite that minimizes the total energy (Kohn, 1991). Except in few special cases, the exact solution remains elusive.
However, bounds on the relaxed energy can be derived, notably using lamination techniques for upper bounds (Avellaneda
and Milton, 1989; Tartar, 1990; Kohn, 1991) or the translation method for lower bounds (Milton, 1990; Pipkin, 1991;
Firoozye, 1991). Such bounds are formulated as optimization problems, which, although simpler than the original
relaxation problem, may still be difficult to solve in a closed form.

At the macroscopic scale, polycrystalline SMAs can be considered as composite materials, viewing groups of grains with
the same orientation as individual homogeneous materials, governed by mesoscopic free energy functions. The general
problem of estimating the macroscopic (or effective) free energy of a nonlinear composite has been extensively studied
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(see e.g. the review by Ponte Castañeda and Suquet (1998)). General methods have notably been developed to obtain
rigorous bounds in terms of the free energies of the constituent materials and of the texture. However, applying such
methods to polycrystalline SMAs is not straightforward because of the complicated mathematical structure of the
mesoscopic free energy, which arises from relaxation.

So far, Taylor- and Sachs-type of bounds have been the approach of choice for studying polycrystalline SMAs: making
the assumption of constant strain, Bhattacharya and Kohn (1997) have proposed a lower bound on the set of recoverable
strains. That bound only takes limited information on the texture into account, because it only depends on the list of
orientations that are present. Making the assumption of constant stress leads to the convexification lower bound on the
macroscopic free energy, as notably considered by Hackl et al. (2007). The result is a convex function, whereas the free
energy of SMAs is not necessarily so. Recently, Hackl and Heinen (2008) have proposed an elaborate upper bound for
polycrystalline SMAs, combining lamination techniques with the ‘non-local’ variational approach of Smyshlyaev and Willis
(1998a). Their results account for the possible non-convexity of the free energy and depend on two-point statistics of the
texture. In the present paper, a rigorous lower bound with the same properties is proposed. We first apply the translation
method to derive a lower bound on the free energy of single crystals (Section 2). Taking the special structure of the bound
obtained into account, a generalization to polycrystals is presented in Section 4. In particular, this allows one to derive a
non-convex polycrystalline bound depending on one-point statistics (Section 5). Next, using a Hashin–Shtrikman type of
variational formulation, a bound depending on two-point statistics is proposed (Section 6). The corresponding results are
compared with other bounds from the literature.

2. Single crystal

Let us first consider a reference single crystal of SMA. To account for the solid/solid phase transformation between
austenite and martensite, the microscopic free energy C0 is generally modelled as a multiwell function of the form

C0
ðeÞ ¼ min

1pipk
C0

i ðeÞ (1)

where

C0
i ðeÞ ¼

1
2ðe� e0

i Þ : L0 : ðe� e0
i Þ þw0

i (2)

represents the free energy of phase i. The total number k of phases as well as the reference transformation strains e0
1; . . . ; e

0
k

is obtained from the crystallographic structure of the alloy considered (see e.g. Bhattacharya, 2003). The number k is equal
to nvþ 1 where nv is the number of martensitic variants. The coefficients w0

i depend on the temperature and are usually
given the same value for all martensitic variants. In (2) we implicitly make the assumption that all the individual phases
have the same elastic moduli L0. This assumption is frequently used in the literature as it considerably simplifies the
analysis, but its validity remains questionable. The more relevant bounds from the literature have been obtained under that
particular assumption (see e.g. Smyshlyaev and Willis, 1998a; Hackl and Heinen, 2008). At the present stage, the extension
of those bounds to a more general context is unclear and remains to be investigated. The same remark also applies to the
methodology presented in this paper.

The mesoscopic free energy of the reference single crystal is the relaxation of C0, defined by

QC0
ðēÞ ¼ inf

e2KðēÞ

1

jOj

Z
O
C0
ðeÞdx (3)

where

KðēÞ ¼ fej9uðxÞ such that e ¼ ðruþrT uÞ=2 in O;uðxÞ ¼ ē:x on @Og (4)

The result is known to be independent on the domain O considered (see Dacorogna, 2008 and references therein).
Following Kohn (1991), we have

QC0
ðēÞ ¼ inf

h2T
QC0
ðē; hÞ (5)

where T ¼ fh ¼ ðy1; . . . ; ykÞ 2 RkjyiX0;
Pk

i¼1yi ¼ 1g and QC0
ðē; hÞ is the so-called relaxation at fixed volume fractions,

defined by

QC0
ðē; hÞ ¼ inf

wi

inf
e2KðēÞ

1
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Z
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i¼1
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0
i ðeÞ dx

In this expression, the first infimum is taken over characteristic functions wi compatible with volume fractions h. Such
functions satisfy

wiðxÞ 2 f0;1g;1 ¼
Xk

i¼1

wiðxÞ; yi ¼
1

jOj

Z
O
wiðxÞdx (6)
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