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a b s t r a c t

The use of reinforcing fibres has shown to be an effective, simple and economic way to
enhance the mechanical characteristics of brittle materials; in particular tensile strength,
fracture and fatigue resistance, wear resistance and durability are usually noticeably higher
in fibre-reinforced materials (FRC) with respect to unreinforced ones. For the above men-
tioned reasons composite materials today can replace or compliment other traditional
structural materials.

On the other hand the extensive use of brittle matrix composite materials requires
appropriate computational models to describe, with adequate accuracy, their mechanical
behaviour. In the present paper a mechanical-based computational model for the descrip-
tion of the macroscopic behaviour of such a class of materials, composed by a matrix phase
and a fibre-reinforcing phase, is formulated. By considering a micromechanical-based
model, the macro constitutive equations of unidirectional or randomly distributed fibres
reinforced materials are obtained by taking into account the possibility of crack formation
and propagation in the matrix as well as fibre debonding and breaking. The developed
computational model is finally used in some numerical simulations in order to outline
its reliability in the assessment of both the fibre–matrix interaction phenomenon as well
as the fracture failure prediction capability in brittle matrix FRC materials.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Several well-known drawbacks of brittle or quasi-brit-
tle materials – such as the low tensile strength, low frac-
ture and fatigue resistance, scarce wear resistance and
durability under repeated loading, etc. – have been ob-
served to be eliminated, or at least mitigated, by the use
of reinforcing fibres. The use of fibres dispersed in a mate-
rial to improve its mechanical properties, has been a typi-
cal technique used in practical applications since ancient
ages.

The appropriate use of reinforcing fibres in brittle mate-
rials has shown to be an effective, simple and economic
way to enhance their mechanical characteristics, allowing
to get materials which are competitive with more techno-

logically advanced ones. For the above mentioned reasons
the use of composite materials in many application fields
has known an increasing interest in the last decades allow-
ing to replace or compliment other traditional structural
materials. In particular FRC are usually characterised by
high strength, fracture and fatigue resistance, high wear
resistance, durability performance, high damping capabil-
ity, low thermal coefficient, and so on.

The extensive use of composite materials has deter-
mined the necessity to describe, with an appropriate accu-
racy from the engineering point of view, their overall
mechanical behaviour to correctly assess their safety level
in the design of structural components. In order to obtain
suitable mechanical model for such materials, various
approaches have been developed such as micromechanical
models (physically based approach, Hori and Nemat-
Nasser, 1999; Kalamkarov and Liu, 1998; Kalamkarov
et al., 1998), homogenisation models (mathematically
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based approach, Balendran and Nemat-Nasser, 1995;
Hassani and Hinton, 1998), etc.

Moreover brittle or quasi-brittle materials (often used
as matrix materials in fibre-reinforced composites) fre-
quently present cracks, which mathematically correspond
to a severe strain localisation phenomenon, leading to
collapse due to fracture propagation; it is well known as
the numerical simulation of such a class of problems pre-
sents several difficulties (computational instabilities,
divergence or non-uniqueness of the solution, etc.) due to

the discontinuous displacement field which develops in
highly strained narrow zones.

Several models have been developed to solve the
mechanical problems stated above; in this context the
classical smeared approaches (suffering by mesh depen-
dence, Bolzon et al., 1997) – eventually improved with
some specific strategies and corrections such as remeshing
or mesh adaptivity (Belytschko and Black, 1999; Bouchard
et al., 2000; Comi and Perego, 2004; Möes et al., 1999;
Rashid, 1998) – finite elements enrichment (Dolbow

Nomenclature

Af cross section area of the fibres
b, t̂ body force vector field and traction field on the

loaded boundary, respectively
B, B(x) generic compatibility matrix of the finite ele-

ment and its corresponding value at the loca-
tion x of the finite element, respectively

BþðxÞ ¼
P

i2Xþe BiðxÞ sum of the compatibility matrices’
values evaluated at the location x 2 Xþe

C0m, C0f , C0eq tangent elastic tensor of the matrix, of the fi-
bres and of the homogenised composite, respec-
tively

d, D characteristic microscopic and macroscopic
length, respectively

Ef young modulus of the fibres
Ec, Ecx, Ecy young modulus of the composite material for

the isotropic case and along the directions x
and y for generic anisotropic cases, respectively

ft;f fibre tensile strength
Gf fracture energy of the matrix per unit surface

crack area
H(x) heaviside jump function
i, j unit vectors normal and parallel to the crack

direction, respectively
k unit vector parallel to the generic fibre axis
2Lf length of the fibres
N, N(x) generic shape functions and shape functions

matrix evaluated at the location x, respectively
in a FE

NþðxÞ ¼
P

i2Xþe NiðxÞ sum of the shape functions evalu-
ated at the location x 2 Xþe

pu(u), ph(h) probability density functions of the angles u
and h, respectively

Q element nodal discontinuity matrix
rc, 2r crack surface roughness and diameter of the fi-

bres, respectively
RVE representative volume element
S discontinuity locus in a cracked solid
sðem

f Þ; sðem
f Þ sliding function such that:
½½ef�m�� ¼ em

f � ½1� sðem
f Þ� and its mean value

along a single fibre
du, dw kinematically admissible displacement fields
uc, vc normal and parallel component to the crack of

the relative displacement vector across the
crack, respectively

u0 minimum opening crack displacement corre-
sponding to the crack formation

V, Vm, Vf volume of the composite, volume of the matrix
phase and volume of the fibre fraction present
in the REV, respectively

wc = uc + vc = uci + vcj relative displacement vector across
the crack faces

w, wn displacement jump vector and its nodal coun-
terpart, respectively

x position vector
dðxÞ; �dðxÞ displacement vector and its continuous part,

respectively in a generic solid or in a finite ele-
ment

[[d(x)]] = w(x) displacement jump vector in a generic
point x 2 S

dd(x) discontinuous part of the displacement field
ds dirac delta function located in S
du, dh variance of the probability density functions

pu(u) and ph(h), respectively
e(x) strain tensor evaluated at the location x
eb(x), eu(x) bounded and unbounded part of the strain

tensor evaluated at the location x, respectively
e, r strain and stress tensors, respectively
de strain field corresponding to a kinematically

admissible displacement fields
[ef-m]] strain jump between the fibre and the matrix

(parallel to fibre axis) in the case of imperfect bond
ef, em

f uniaxial fibre strain and uniaxial matrix strain
measured at the location and in the fibre direc-
tion, respectively

em
f matrix mean strain measured in the fibre direc-

tion
u, h angles indicating the fibre orientation in the 3D

space
�u; �h mean values of the probability density func-

tions pu(u) and ph(h), respectively
l = Vm/V, g = Vf/V REV matrix volume fraction and fibre

volume fraction, respectively
r(x) stress tensor evaluated at the location x
rc(u), sc(u) stress-crack opening displacement and shear

stress-crack opening displacement relationship,
respectively

sau, sfu maximum fibre–matrix interface shear stress
and friction fibre–matrix interface shear stress,
respectively

C = Ct [ Cu boundary of the solid
Ct, Cu portion of the boundary on which tractions and

displacements are prescribed, respectively
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