Accepted Manuscript

Application of artificial neural network and adaptive neuro-fuzzy inference system to investigate corrosion rate of zirconium-based nano-ceramic layer on galvanized steel in 3.5% NaCl solution

S.M. Mousavifard, M.M. Attar, A. Ghanbari, M. Dadgar

PII: S0925-8388(15)00751-3

DOI: http://dx.doi.org/10.1016/j.jallcom.2015.03.052

Reference: JALCOM 33658

To appear in: Journal of Alloys and Compounds

Received Date: 25 November 2014 Accepted Date: 7 March 2015

Please cite this article as: S.M. Mousavifard, M.M. Attar, A. Ghanbari, M. Dadgar, Application of artificial neural network and adaptive neuro-fuzzy inference system to investigate corrosion rate of zirconium-based nano-ceramic layer on galvanized steel in 3.5% NaCl solution, *Journal of Alloys and Compounds* (2015), doi: http://dx.doi.org/10.1016/j.jallcom.2015.03.052

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Application of artificial neural network and adaptive neuro-fuzzy inference system to investigate corrosion rate of zirconium-based nano-ceramic layer on galvanized steel in 3.5% NaCl solution

S.M. Mousavifard ¹, M.M. Attar*, A. Ghanbari ¹, M. Dadgar ²

¹ Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran, Iran

² Textile Engineering Department, Neyshabur University, Neyshabur, Iran

Abstract

A nano-ceramic Zr-based conversion solution was prepared and optimization of Zr concentration, pH, temperature and immersion time for the treatment of hot-dip galvanized steel (HDG) was performed. SEM microscopy was utilized to investigate the microstructure and film formation of the layer and the anticorrosion performance of conversion coating was studied using polarization test. Artificial intelligence systems (ANN and ANFIS) were applied on the data obtained from polarization test and the models for predicting corrosion current density values were attained. The outcome of these models showed proper predictability of the methods. The influence of input parameters was discussed and the optimized conditions for Zr-based conversion layer formation on the galvanized steel were obtained as follows: pH 3.8 to 4.5, Zr concentration of about 100 ppm, ambient temperature and immersion time of about 90 s.

Keywords: Zirconium conversion coating; corrosion prediction; galvanized steel; DC polarization; artificial neural network.

1. Introduction

^{*} Corresponding author: M.M. Attar, Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran, E-mail: attar@aut.ac.ir Tel.: +98 21 64542404; fax: +98 21 66468243

Download English Version:

https://daneshyari.com/en/article/7998951

Download Persian Version:

https://daneshyari.com/article/7998951

Daneshyari.com