Accepted Manuscript

Influence of manganese substitution on structural and magnetic properties of $CoFe_2O_4$ nanoparticles

N. Adeela, K. Maaz, U. Khan, S. Karim, A. Nisar, M. Ahmad, G. Ali, X.F. Han, J.L. Duan, J. Liu

PII: S0925-8388(15)00928-7

DOI: http://dx.doi.org/10.1016/j.jallcom.2015.03.203

Reference: JALCOM 33817

To appear in: Journal of Alloys and Compounds

Received Date: 31 January 2015 Revised Date: 19 March 2015 Accepted Date: 29 March 2015

Please cite this article as: N. Adeela, K. Maaz, U. Khan, S. Karim, A. Nisar, M. Ahmad, G. Ali, X.F. Han, J.L. Duan, J. Liu, Influence of manganese substitution on structural and magnetic properties of CoFe₂O₄ nanoparticles, *Journal of Alloys and Compounds* (2015), doi: http://dx.doi.org/10.1016/j.jallcom.2015.03.203

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Influence of manganese substitution on structural and magnetic properties of CoFe₂O₄ nanoparticles

N. Adeela^{a, b}, K. Maaz^{b, d*}, U. Khan^c, S. Karim^b, A. Nisar^b, M. Ahmad^b, G. Ali^b, X. F. Han^c, J.L.

Duan^d, J. Liu^d

^aCenter for High Energy Physics, University of the Punjab, Lahore 54000, Pakistan

^bNanomaterials Research Group, Physics Division PINSTECH, Nilore 45650, Islamabad, Pakistan

^cInstitute of Physics, Chinese Academy of Sciences, Beijing 100190, China.

^aInstitute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China

Abstract

Nanocrystalline ferrites with general formula of $Co_{1-x}Mn_xFe_2O_4$ ($0 \le x \le 1$) have been synthesized via wet chemical coprecipitation technique. Structural and magnetic investigations were performed at room temperature. The results revealed the formation of single phase Mnsubstituted CoFe₂O₄ nanoparticles with crystallite sizes in the range 12-15 nm. An increase in lattice parameter and decrease in X-ray density were observed with increasing Mn concentration in CoFe₂O₄. FTIR results showed two (vibrational) frequency bands (v_1 and v_2) for tetrahedral and octahedral sites confirming the formation of spinel ferrite. Magnetic measurements showed increasing behavior of both coercivity and saturation magnetization of cobalt ferrite up to 20-30% manganese concentration followed by a monotonic decrease in these parameters for higher

Key words: Ferrite Nanoparticles, Coprecipitation, Magnetic properties,

Mn concentrations.

Correspondence: maaz@impcas.ac.cn (K. Maaz)

Download English Version:

https://daneshyari.com/en/article/7998984

Download Persian Version:

https://daneshyari.com/article/7998984

<u>Daneshyari.com</u>