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a b s t r a c t

We have studied the field-induced additional exchange-entropy on an elastic ferromagnet as a response
effect of the dependence of its bulk modulus with temperature. We consider that the temperature depen-
dence of the bulk modulus follows a linear behavior or a Wachtman-type equation. Our analysis is based
on a free energy model containing exchange, Zeeman and elastic terms. From the deduced expressions for
the exchange parameter, the additional exchange-entropy was obtained. This quantity must be the dif-
ference between the conventional and the total entropy change which were calculated from well-estab-
lished thermodynamic expressions, i.e., configurational spin disorder and Maxwell’s equation,
respectively. In addition, we established an analytical relation between the field-induced additional
exchange-entropy and the temperature dependence of the bulk modulus.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

The magnetoelastic behavior of some magnetic materials is of
fundamental interest to both the point of view of basic physics
and applications. Particularly, it is an important topic for the devel-
opment of refrigeration technology at room temperature, which is
one of the applications of the magnetocaloric effect (MCE) [1,2].

This topic has received renewed attention since the discovery in
1997 of giant MCE (compared to Gd prototype refrigerant) in the
Gd5Ge2Si2 compound [3]. Among the materials with adequate per-
formance to be used as refrigerant there are some that present
strong magnetoelastic coupling. However, this kind of coupling
can induce thermal and magnetic hysteresis, at a first order phase
transition, which is responsible for making magnetic refrigerants
less efficient in a refrigeration cycle. A reduced hysteresis, as well
as large isothermal entropy change over a broad range of temper-
atures, is desirable for the magnetic refrigeration technology. In
fact, the necessity of hysteresis loss reduction in Gd5Ge2Si2 has
been emphasized since 2004 as a problem to be solved [4].

The thermodynamic framework for magnetoelastic coupling in
the very interesting MnAs ferromagnetic compound goes back to
the classic work of Bean and Rodbell in 1962 [5]. This material
exhibits large hysteresis and a giant MCE at the transition temper-
ature of 313 K that is accompanied by a simultaneous structural

transition. In this case, around the Curie temperature, it is observed
a first-order transition between a ferromagnetic hexagonal phase
to a paramagnetic orthorhombic phase [6].

As pointed out recently [7], the ferromagnetic mode of MnAs is
kept for a slight doping with Cr which reduces, or even eliminates,
the large thermal hysteresis of MnAs, but decreases the transition
temperature. As instance, TC = 267 K for x = 0.001 in Mn1�xCrxAs.

First-order phase transitions are characterized by the coexis-
tence of phases and can lead to a large change in volume in a short
interval of temperature. There is a simultaneous possibility of a
change in elastic constants across the transition region [8]. It sug-
gests that the elastic term of the free energy must be conveniently
analyzed to evaluate the magnetic and thermal behavior across the
transition between the two phases. In this respect, it is interesting
to study the entropy change of a material when subjected to an
external mechanical action which is known as the mechanocaloric
effect, i.e. the thermal response to uniaxial stress (elastocaloric) or
to hydrostatic pressure (barocaloric), which is largest near struc-
tural phase transitions [9–11]. In the present work, however, we
discuss only the magnetocaloric effect.

In a previous paper, some of the authors of the current work
have reported a contribution to magnetic entropy for elastic ferro-
magnets called additional exchange-entropy [12]. When it is added
to the conventional second-order field-induced entropy change,
we recover the total entropy change obtained from the Maxwell’s
relation that involves derivatives of magnetization with respect
to temperature. This model was later applied to the Gd5Ge2Si2

http://dx.doi.org/10.1016/j.jallcom.2015.01.151
0925-8388/� 2015 Elsevier B.V. All rights reserved.

⇑ Corresponding author.
E-mail address: ejrplaza@gmail.com (E.J.R. Plaza).

Journal of Alloys and Compounds 632 (2015) 122–125

Contents lists available at ScienceDirect

Journal of Alloys and Compounds

journal homepage: www.elsevier .com/locate / ja lcom

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jallcom.2015.01.151&domain=pdf
http://dx.doi.org/10.1016/j.jallcom.2015.01.151
mailto:ejrplaza@gmail.com
http://dx.doi.org/10.1016/j.jallcom.2015.01.151
http://www.sciencedirect.com/science/journal/09258388
http://www.elsevier.com/locate/jalcom


and MnAs0.95Sb0.05 compounds [13]. In both cases, the main contri-
butions to entropy change are exchange and magnetoelastic
energy terms [14]. The last one is mainly due to an indirect role
to the MCE through modifications in the volume and consequently
in the exchange parameter. The temperature and field dependence
of the exchange parameter were deduced in a phenomenological
way. In the present study, based on a free energy model containing
exchange, Zeeman and elastic terms, we consider that the temper-
ature dependence of bulk modulus follows a linear behavior or a
Wachtman type equation [15]. Then, it is possible to obtain the
temperature and field dependence of the exchange parameter from
the free energy in a direct way. Analytical expressions for deforma-
tion as well as the additional entropy are obtained and the temper-
ature and field behavior of exchange parameters are shown. Our
results demonstrate the validity of the field-induced additional
exchange-entropy and provide further support to the adequacy
of the model.

2. Theory

In the mean field theory, the equation of state for rigid ferro-
magnets can be functionally defined by the Brillouin function,
BJðxÞ, with argument x ¼ gJlBðH þ HmolÞ=kBT, through:

M ¼ NgJlBBJðxÞ ð1Þ

The molecular field being Hmol ¼ gM and the spin configura-
tional entropy given by:

Scon ¼ R
Z

x
@BJðxÞ
@x

dx ð2Þ

Eq. (2) is used to obtain the conventional field-induced mag-
netic entropy change at each temperature:

DScon ¼ SconðHfinalÞ � SconðHinitialÞ ð3Þ

When calculating the magnetic properties using an exchange
parameter which depends on the volume strain, gðxÞ, one can
build the free Gibbs energy [5], per volume unity, by means of
exchange, Zeeman and elastic term

GðM;xÞ ¼ �1
2
gM2 � HM þ Bx2

2
� TS ð4Þ

where g ¼ g0ð1þ bxÞ is the exchange parameter being b a constant,
B is the bulk modulus (inverse of the compressibility, K) and S is the
entropy. Note that the supposed exponential decay or growth of the
exchange parameter with distance is expanded up to first order in
deformation.

From minimizing the free energy in relation to relative defor-
mation, @GðM;xÞ

@x ¼ 0, one obtain:

xðMÞ ¼ 1
2

Kg0bM2 ð5Þ

Substituting Eq. (5) into Eq. (4), results:

GðM;xÞ ¼ �1
2
g�M � HM � TS ð6Þ

where g� � g0ð1þ bx=2Þ. Thus, the elastic term can be absorbed by
the exchange one. This is also the situation in the case that there are
more contributions to the free energy. In this respect, for any gðH; TÞ
dependence, it has been derived a field-induced additional
exchange-entropy change [12] given by:

dSaddðH; TÞ ¼ M
@g
@T

@M
@H
� @g
@H

@M
@T

� �
dH ð7Þ

in such a way that total entropy-change satisfies:

DSMaxwell ¼ DScon þ DSadd ð8Þ

The left side in Eq. (8) can be calculated from magnetization
curves, using the well-known Maxwell’s relation, as:

DSMaxwell Tð ÞDH ¼
Z Hfinal

Hinitial

@M=@Tð ÞHdH ð9Þ

which is valid for a system in thermodynamic equilibrium.

3. Results and discussion

If the relative deformation (or the exchange parameter) is a
unique function of M, for instance having the quadratic form in
Eq. (5), then Eq. (7) has a null contribution and DScon is the only
contribution to the total entropy change. This is also the case when
a type of anharmonic term is included in the free energy [16].

To obtain the case DSadd–0, we consider the bulk modulus
dependence with temperature in the elastic term of Eq. (4). Such
dependence has been reported recently for different systems by a
number of authors, see, e.g., Refs. [17,18]. For simplicity, in this
study, we consider a linear and a Wachtman-type dependence of
the bulk modulus with the temperature [19]. They are written as:

BðTÞ ¼ B0½1� bðT � aÞ� ð10Þ

and

BðTÞ ¼ B0 � aTexpð�b=TÞ ð11Þ

for the linear case (L-case) and Wachtman case (W-case), respec-
tively. Here, a and b are constants and B0 is the modulus value at
a reference temperature, i.e., T ¼ a for the L-case and T ¼ 0 in the
W-case. Minimizing the free energy in relation to the deformation,
we obtain:

xðM; TÞ ¼ 1
2BðTÞ

g0bM2 ð12Þ

From relation (12), we observe the M2 dependence together
with an explicit temperature contribution for the deformation
through the bulk modulus.

Using g ¼ g0ð1þ bxÞ and Eqs. (10)–(12), one can obtain from
Eq. (7), the differential form of the additional entropy change:

dSaddðH; TÞ ¼
b

2B0 1� bðT � aÞ½ �2
g2

0b
2M3 @M

@H
dH ð13Þ

and

dSaddðH; TÞ ¼
ð1þ b=TÞexpð�b=TÞ
2 B0 � aTexpð�b=TÞ½ �2

ag2
0b

2M3 @M
@H

dH ð14Þ

for the L-case and W-case, respectively. From Eqs. (13) and (14) it
follows DSadd ¼ 0 if the bulk modulus is a constant, i.e.,
a ¼ 0 ðb ¼ 0Þ in the W-case (L-case).

To perform the numerical calculations we have chosen g ¼ 2;
J ¼ 3=2; b ¼ 10; B0 ¼ 4:52� 105ðJ=molÞ and g0 ¼ 1466ðT2=meVÞ,
similar data set as that used for the MnAs compound [5]. For the
L-case, the additional parameters a ¼ 300ðKÞ and b ¼
2� 10�3ðK�1Þ were used. For the W-case the chosen parameters
were a ¼ 790ðJ=mol KÞ and b ¼ 300ðKÞ. These sets of parameters
reproduce the relative volume change of the order of that observed
in MnAs around the transition. Magnetization was calculated from
Eq. (1) where the argument is obtained from ð@G=@MÞ=ðkBTÞ. The
results, for fields between 2 and 5 T, are showed in Fig. 1(a) and
(b) where it is observed a smooth and a more abrupt behavior of
M vs. T for the L and W cases, respectively. The reason to use this
interval of fields is to guarantee differentiable curves MðH; TÞ and
gðH; TÞ. This last is obtained using g ¼ g0ð1þ bxÞ and Eq. (12).
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