Accepted Manuscript

Achieving room temperature superplasticity in Zn-5Al alloy at high strain rates by equal-channel angular extrusion

M. Demirtas, G. Purcek, H. Yanar, Z.J. Zhang, Z.F. Zhang

PII: S0925-8388(14)02540-7

DOI: http://dx.doi.org/10.1016/j.jallcom.2014.10.111

Reference: JALCOM 32457

To appear in: Journal of Alloys and Compounds

Received Date: 23 July 2014
Revised Date: 8 October 2014
Accepted Date: 22 October 2014

Please cite this article as: M. Demirtas, G. Purcek, H. Yanar, Z.J. Zhang, Z.F. Zhang, Achieving room temperature superplasticity in Zn-5Al alloy at high strain rates by equal-channel angular extrusion, *Journal of Alloys and Compounds* (2014), doi: http://dx.doi.org/10.1016/j.jallcom.2014.10.111

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Achieving room temperature superplasticity in Zn-5Al alloy at high strain rates by equal-channel angular extrusion

M. Demirtas^a, G. Purcek^{b*}, H. Yanar^b, Z.J. Zhang^c, Z.F. Zhang^c

^aDepartment of Mechanical Engineering, Bayburt University, Bayburt 69000, Turkey

^bDepartment of Mechanical Engineering, Karadeniz Technical University, Trabzon 61080, Turkey

^cShenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of

Sciences, Shenyang 110016, China

Abstract

Multi-pass equal-channel angular extrusion/pressing (ECAE/P) was applied to the

eutectic Zn-5Al alloy to achieve high strain-rate (HSR) superplasticity in that alloy at room

temperature (RT) by producing ultrafine-grained (UFG) microstructure. ECAE processing

transformed the coarse-grained lamellar/spherical microstructure into a unique bimodal

structure having equiaxed Zn-rich η-phase with a mean grain size of 540 nm and spherical Al-

rich α -phase with an average grain size of 110 nm. The α -phase particles accumulated mainly

along the η-phase boundaries. This unique microstructure brought about an extraordinary

improvement in HSR superplasticity of the alloy even at RT. While the strength values

decreased after ECAE, the elongation to failure increased substantially. The maximum

elongation was 520 % at the strain rate of 10⁻³ s⁻¹, still high elongation of about 400 % was

achieved at a high strain rate of 10^{-2} s⁻¹. This extraordinary improvement in HSR

superplasticity of Zn-5Al alloy was attributed to the morphologically unique bimodal

microstructure in UFG regime formed after ECAE. The grain boundary sliding (GBS) was

found to be the main deformation mechanism for this alloy in superplastic regime.

Keywords: High strain rate superplasticity; Zn-Al alloys; ultrafine-grained microstructure

*Corresponding author. Tel.: +90-4623772941; Fax: +90-4623253336

E-mail address: purcek@ktu.edu.tr (G. Purcek)

1

Download English Version:

https://daneshyari.com/en/article/7999853

Download Persian Version:

https://daneshyari.com/article/7999853

Daneshyari.com