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Multidimensional stability of martensite twins
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Received 16 March 2007; received in revised form 19 October 2007; accepted 7 November 2007

Abstract

This paper considers phase boundaries governed by regular kinetic relations as first proposed by Abeyaratne and

Knowles [1990. On the driving traction acting on a surface of strain discontinuity in a continuum. J. Mech. Phys. Solids 38

(3), 345–360; 1991. Kinetic relations and the propagation of phase boundaries in solids. Arch. Ration. Mech. Anal. 114,

119–154]. It shows that static configurations of hyperelastic materials, in which two different martensitic (monoclinic)

states meet along a planar interface, are dynamically stable towards fully three-dimensional perturbations. For that

purpose, the reduced stability (or reduced Lopatinski) function associated to the static twin [Freistühler and Plaza, 2007.

Normal modes and nonlinear stability behavior of dynamic phase boundaries in elastic materials. Arch. Ration. Mech.

Anal. 186 (1), 1–24] is computed numerically. The results show that the interface is weakly stable under Maxwellian

kinetics expressing conservation of energy across the boundary, whereas it is uniformly stable with respect to linearly

dissipative kinetic rules of Abeyaratne and Knowles type.
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1. Introduction

At appropriate temperatures, certain crystalline materials are characterized by a multiplicity of preferred
martensitic states of deformation. Nonlinear elasticity theory (Ball and James, 1987, 1992) models such
materials by a stored-energy density

W : R3�3
þ �!½0;þ1Þ (1)

which, as a frame-indifferent function of the deformation gradient F 2 R3�3
þ , has a non-convex, multiple well

structure with several global minima. Being any of these minima a martensitic deformation state, each
corresponding well is called a martensitic phase. Many such materials allow for pairs ðF�;FþÞ of energy
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minimizing martensitic states which satisfy the Hadamard condition,

Fþ � F� ¼ a� m (2)

for some a; m 2 R3, aa0; jmj ¼ 1. In this case, F� and Fþ are called rank-one connected. Hadamard condition
implies the existence of a continuous deformation with planar interface separating layers in which the
deformation gradient is either Fþ or F� at each side of the plane. Such a configuration,

F0ðxÞ ¼
F�; x � mo0;

Fþ; x � m40;

(
x 2 R3, (3)

is called a martensite twin.
Let us identify the elastic body at rest with its reference configuration O � R3. Mathematically, the function

ðF�; v�Þðx; tÞ:¼ðF0ðxÞ; 0Þ; ðx; tÞ 2 O� ½0;þ1�,

is a time-independent (static) weak solution to the equations of non-thermal elastodynamics in the absence of
external forces,

Ft �rxv ¼ 0,

vt � divxsðFÞ ¼ 0, ð4Þ

together with the constraint

curlx F ¼ 0. (5)

Here, sðFÞ denotes the (first) Piola–Kirchhoff stress tensor

s ¼
qW

qF
,

and the spatial and temporal derivatives of the local deformation X : O� ½0;þ1Þ ! R3,

Fðx; tÞ ¼ rxX 2 R3�3 and vðx; tÞ ¼ Xt 2 R3 (6)

(defined component-wise by,

Fij ¼
qXi

qxj

and vi ¼
qXi

qt
,

for all i; j ¼ 1; 2; 3), denote the possibly time-dependent deformation gradient and local velocity, respectively,
of the elastic material.

The system of equations (4) accounts for the basic balance laws of continuum mechanics (see, e.g.,
Dafermos, 2005), assuming that no thermal effects play a role, and that the forces within the medium derive
from the energy density function W . The curl-free constraint (5) is a short-cut for the compatibility equations

qxk
Fij � qxj

Fik ¼ 0; i; j; k ¼ 1; 2; 3,

which are clearly a consequence of Eqs. (6).
This paper addresses the stability of martensite twins under the viewpoint of continuum elastodynamics.

More precisely, given a multidimensional smooth perturbation (or a small wave impinging on the interface) of
the piecewise smooth initial data (3), is there a local solution to Eqs. (4) with the same wave pattern? In other
words, will solutions ðF; vÞ to the dynamic system of equations, whose initial data ðF; vÞðx; 0Þ are only near to—
but not identical with—ðF0ðxÞ; 0Þ, be close and similar to—or far and qualitatively different from—ðF�; v�Þ?
Considering Eq. (3) as a localized planar sharp interface, we are then concerned with the well-posedness of the
associated Cauchy problem for Eqs. (4) with piecewise smooth initial data (3).

Localized traveling discontinuities arise naturally as piecewise smooth solutions to Eqs. (4), and must satisfy
canonical jump conditions of Rankine–Hugoniot type expressing conservation across the interface. They are
called shocks when they separate states in the same martensitic phase, and phase boundaries when the states on
either side are in different phases. Martensite twins like Eq. (3) are static examples of the latter. Due to non-
convexity of the stored energy W , the system of conservation laws is of mixed-type, that is, the system changes
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