Accepted Manuscript

Analysis of characteristics of vanadate conversion coating on the surface of magnesium alloy

Liyuan Niu, Shiuan-Ho Chang, Xian Tong, Guangyu Li, Zimu Shi

PII: S0925-8388(14)01899-4

DOI: http://dx.doi.org/10.1016/j.jallcom.2014.08.044

Reference: JALCOM 31897

To appear in: Journal of Alloys and Compounds

Received Date: 24 May 2014 Revised Date: 23 July 2014 Accepted Date: 5 August 2014

Please cite this article as: L. Niu, S-H. Chang, X. Tong, G. Li, Z. Shi, Analysis of characteristics of vanadate conversion coating on the surface of magnesium alloy, *Journal of Alloys and Compounds* (2014), doi: http://dx.doi.org/10.1016/j.jallcom.2014.08.044

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Original copy of revised text

Analysis of characteristics of vanadate conversion coating

on the surface of magnesium and		on	the	surface	e of	magnesium	alloy
---------------------------------	--	----	-----	---------	------	-----------	-------

3	Liyuan Niu ^{1,3} , Shiuan-Ho Chang* ¹ , Xian Tong ¹ , Guangyu Li ² , Zimu Shi ¹
4 5	¹ Department of Material Engineer, Zhejiang Industry & Trade Vocational Colledge, WenZhou, China. 325000. ² College of Materials Science and Engineering, Jilin University, Nanling
6 7	Campus, Changchun, China, 130025. ³ Wenzhou Laite Laser Institute Ltd., Wenzhou China 325003
8	E-mail: 1802186169@qq.com
9 10	Abstract
11	The vanadate conversion coating (VCC) was formed on the surface of magnesium
12	(Mg) alloy in vanadium phosphate solution, as well as the cathode electrophoresis and
13	bake-curing treatments of the conversion coating proceeded. According to the addition of
14	vanadate in the solution, the conversion coating is refined crystalline and possesses low weight
15	loss during electrophoresis and bake-curing treatment processes. Besides, when the content of
16	NaVO ₃ is 4g/L in vanadate solution, not only the microstructure of conversion coating is the
17	most refined, but also the adhesion and corrosion resistance of electrophoretic paint coating
18	(EPC) is the best. On the other hand, the "rare earth phosphating VS low-temperature
19	electrophoresis" technique is suitable for Mg alloy coatings. As seen in scanning electron
20	microscope (SEM), the VCC reveals three-dimensional net structure, which provides a well
21	underlayer for the adhesion between electrophoretic paint and the samples.
22	Keywords: magnesium alloy, conversion coating, electrophoresis, vanadate
23	

1

2

Download English Version:

https://daneshyari.com/en/article/8000747

Download Persian Version:

https://daneshyari.com/article/8000747

<u>Daneshyari.com</u>