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a b s t r a c t

The present contribution proposes a homogenization methodology for estimating strength
properties of elastoplastic matrix–inclusion materials (possible combination of empty
pores, fluid-filled pores, and rigid particles), considering a matrix behavior governed by
yield surfaces of second order (e.g., Drucker–Prager, Mises–Schleicher, elliptical surface).
The procedure considers yielding of the matrix phase and is based on mean-field methods
of continuum micromechanics. The main constituents of the theory are the computation of
representative stress measures based of an estimated stress distribution and the assump-
tion of full exploitation of strength within the matrix material. It is found that the resulting
effective yield surface is in any case again a function of second order, which allows the
extension of the proposed method to multiple application, such as e.g., in case of
multi-level material systems. Moreover, a differential homogenization procedure charac-
terized by repeated application of the proposed method is introduced for treating materials
with high inclusion fractions. Crucial assumptions and obtained effective yield criteria are
validated by means of numerical results obtained from finite-element simulations and
with results taken from the literature.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Many man-made and biological materials are hierarchi-
cally structured with particles and pores at smaller length
scales governing the behavior at the so-called macro-scale.
The comprehension of effects occurring at smaller length
scales and their influence on the material behavior at the
macro-scale is valuable in terms of efficient engineering
usage as well as for possible synthesis of new materials.

An often-cited pioneering contribution to this matter is
Gurson (1977) where a micromechanics-based yield crite-
rion for porous materials was derived. By means of a

kinematic approach of limit analysis, the effective strength
of a hollow sphere consisting of a rigid-plastic Mises mate-
rial was evaluated. Since then, many contributions refined
the so-obtained criterion. One approach for this is based on
finite-element simulations of representative volume ele-
ments such as in Fritzen et al. (2012a,b) and Khdir et al.
(2015) for porous Mises and Green-type materials.
Findings in Khdir et al. (2014) show that the size distribu-
tion of pores only has a minor effect on macroscopic prop-
erties at numerical homogenization. Accordingly, available
homogenization methodologies are supposed to be equally
appropriate for any size distribution, even though they
were developed for one-size pores as virtually all analytical
approaches. Alternatively to these FEM-based contribu-
tions, Pastor et al. (2013) used numerical limit analysis
for examining porous Drucker–Prager, Mises–Schleicher,
and Green-type materials, highlighting the overestimation
of strength in hydrostatic compression by analytical
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approaches for the first two cases. Still, analytical
approaches remain important due to their generality with
respect to input parameters and computational efficiency.
Mean-field methods initially applied for linear problems
(e.g., Mori et al. (1973) and Benveniste (1987)) were more
recently adopted for non-linearity. Major progress in terms
of non-linear homogenization was made by Ponte
Castañeda (1991, 1996, 2002) with variational methods
using optimally chosen linear comparison composites.
Barthélémy and Dormieux (2004); Dormieux et al. (2006)
and Maghous et al. (2009) applied non-linear homogeniza-
tion methods based on the modified secant method to
Drucker–Prager matrix materials with either pores or rigid
particles for obtaining effective yield surfaces. Porous
Mises–Schleicher materials were treated in Lee and Oung
(2000) and Durban et al. (2010). Zhou and Meschke
(2014) adopted the method of linear comparison compos-
ites introduced by Ponte Castañeda (2002) for homoge-
nization of two-phase materials where both phases
(matrix and inclusion) follow Drucker–Prager or elliptical
strength criteria. In recent contribution, Shen et al.
(2012) and He et al. (2013), approaches to two-step
homogenization in case of plasticity were presented, deal-
ing with macro-pores and rigid particles in a porous
matrix. Therein, the method introduced in Maghous et al.
(2009) was used to model the porous matrix material
behavior, considering the macro-pore/particle by applying
limit analysis on a spherical single-inclusion model. In
Barai and Weng (2011) the problem of agglomeration of
fibers was met by two-scale mean-field homogenization.
Also Shen et al. (2013) applies mean-field methods for
two homogenization steps, highlighting the effect of the
flow rule (associated and non-associated).

The present contribution focuses on the development of
an easily applicable method for multi-phase and
multi-level homogenization based on the following
assumptions:

� The inclusion phases consist of spherical particles or
cavities (empty or fluid-filled) on different length
scales.
� The matrix material behavior is representable by per-

fect plasticity (no hardening or rate effects).
� The material behavior of particles is linear elastic with

the stiffness being significantly higher than of the matrix
material (quasi-rigid). The stiffness of fluid filled pores is
high in compression as well (quasi-incompressible),
while negligible in shear.
� The material is subjected to monotonic loading and

infinitesimal deformation.

The approach represents an extension of the modified
secant method for porous materials (Dormieux et al.,
2006), reducing strength homogenization to an elastic sub-
stitute problem, with the appropriate choice of elastic
parameters enabling the proper estimation of the ultimate
limit stress state within the material system. It is applied
to matrix–inclusion materials, where the considered
matrix material is governed by arbitrary second-order
yield surfaces (including, e.g., Mises–Schleicher, Drucker–
Prager and elliptical surfaces as special cases):

f ðrÞ ¼ r2
d þ arm þ br2

m � c 6 0; ð1Þ

where rm is the hydrostatic pressure, and rd the equiva-
lent deviatoric stress:

rm ¼
1
3

trðrÞ; rd ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1
2

s : s

r
; s ¼ r� 1rm: ð2Þ

The factor
ffiffiffiffiffiffiffiffi
1=2

p
in the definition of rd in Eq. (2) ensures

that for pure shear rd ¼ s (with s as the only non-zero
component of the stress tensor). Hence, rd can also be
denoted as the equivalent pure shear. The variables a; b,
and c in Eq. (1) denote material parameters of the matrix
material; c corresponds to the square of the cohesion
(i.e., c ¼ s2

y , where sy is the absolute value of the yield
stress at pure shear), and a and b refer to the pressure sen-
sitivity of the matrix material (a ¼ b ¼ 0 for Mises matrix
materials). Differences between strength in tension and
compression can be considered with a – 0. The Mises–
Schleicher criterion is retrieved with a > 0 and b ¼ 0, and
the Drucker–Prager criterion with a ¼ aDPsy and b ¼ �s2

y

where aDP is the friction coefficient in the Drucker–Prager
yield criterion (f DPðrÞ ¼ rd þ aDPrm � sy ¼ 0).2 Since, as
later shown, the yield surfaces resulting from the presented
homogenization scheme are of second-order as well, a
straight forward application to multi-level homogenization
becomes possible. Within this framework, a differential
homogenization scheme is proposed as an alternative
approach for strength homogenization when dealing with
materials exhibiting high inclusion fractions. Analytical con-
siderations are accompanied with numerical analyses of a
representative elementary volume (REV) using the
finite-element method, providing the basis for validation of
basic assumptions considered in the derivation and of the
obtained effective yield surfaces.

The paper is structured as follows: In Section 2, the
homogenization procedure for matrix–inclusion materials
is presented exploiting the Mori–Tanaka scheme for
obtaining an estimate of the stress state in the material
system. Basic assumptions and the model performance
are tested via numerical simulations. In Section 3, the
extension of the model towards multiple application is
presented, leading to multi-level homogenization and the
differential scheme of strength homogenization.
Examples of two-level homogenization illustrate the influ-
ence of material composition and hierarchical organization
of materials on the effective strength. The paper closes
with concluding remarks. In Appendix A, the main princi-
ples and equations of the Mori–Tanaka scheme (Mori
et al., 1973; Benveniste, 1987) required in this paper are
given. Appendix B contains a part of the derivation of the
homogenization scheme presented in Section 2 (i.e., the
evaluation of the virtual work in consequence of an eigen-
stress) in more detail.

2. Model and model validation

For determining the effective behavior of matrix–inclu-
sion materials, a representative elementary volume (REV,

2 Note, that f DPðrÞ ¼ 0 yields the same yield surface as f ðrÞ ¼ 0 in Eq. (1).
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