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Abstract

This paper deals with an optimal dimensional synthesis method of the DELTA parallel robot for a prescribed work-
space. The objective function is based on the mathematical concept of the power of a point with respect to bounding con-
straint surfaces. A genetic algorithm based method was used to solve this problem. The proposed method is simple and was
shown to be effective in finding the dimensions of the DELTA robot having the smallest workspace containing a prespec-
ified region in space. These dimensions were also determined in the case where the user defines a safety region, to avoid
points in the prescribed workspace being on the boundary of the DELTA robot’s actual workspace.
© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The Stewart platform mechanism is a fully parallel mechanism. In the general sense, each of these mecha-
nisms consists of two platforms that are connected by six prismatic joints acting in parallel. One of the plat-
forms is defined as the moving platform. It has six degrees of freedom relative to the other fixed platform,
which is the “base”.

The analysis of this type of mechanisms has been the focus of much recent research. Stewart presented his
platform in 1965 [20]. Since then, several authors [5,6] have proposed a large variety of designs.

The interest in parallel manipulators (PM’s) arises from the fact that they exhibit high stiffness in nearly all
configurations and a high dynamic performance. Recently, there has been a growing tendency to focus on par-
allel manipulators with 3-translational degree of freedom (dof) [1,4,10,11,17,18,23,24]. In this case, the mobile
platform can only translate, along the three cartesian axes, with respect to the base. The DELTA robot is one
of the most famous translational parallel manipulators [4,25,21].

" Corresponding author. Tel.: +216 73500244; fax: +216 73500514.
E-mail address: lotfi.romdhane@enim.rnu.tn (L. Romdhane).

0094-114X/$ - see front matter © 2006 Elsevier Ltd. All rights reserved.
doi:10.1016/j.mechmachtheory.2006.06.012


mailto:lotfi.romdhane@enim.rnu.tn

860 M.A. Laribi et al. | Mechanism and Machine Theory 42 (2007) 859-870

However, as most of the authors mentioned above have pointed out, the major drawback of parallel manip-
ulators is their limited workspace. Gosselin [7], separated the workspace, which corresponds to a six-dimen-
sional coordinate space, in two parts: positioning and orientation workspace. He studied only the positioning
workspace, 1.e., the region of the three-dimensional cartesian space that can be attained by a point on the top
platform when its orientation is given. A number of authors have described the workspace of a parallel mech-
anism by discretizing the cartesian workspace. Concerning the orientation workspace, Romdhane [19] was the
first to address the problem of its determination. In the case of 3-translational degree of freedom (dof) manip-
ulators, the workspace is limited to a region of the three-dimensional cartesian space that can be attained by a
point on the mobile platform.

A more challenging problem is designing a parallel manipulator for a given workspace. This problem has
been addressed by Boudreau and Gosselin [2,3], who proposed an algorithm that allows for the determination
of some parameters of the parallel manipulators using a genetic algorithm method in order to obtain a work-
space as close as possible to a prescribed one. Kosinska et al. [12] presented a method for the determination of
the parameters of a Delta-4 manipulator, where the prescribed workspace has been given in the form of a set
of points. Snyman et al. [22] propose an algorithm for designing the planar 3-RPR manipulator parameters,
for a prescribed two-dimensional physically reachable output workspace. Similarly in [8] the synthesis of a
3-dof planar manipulators with prismatic joints is performed using a GA, where the architecture of a manip-
ulator and its position and orientation with respect to the prescribed workspace were determined.

In this paper, the three translational dof DELTA robot is designed to have a specified workspace. A genetic
algorithm (GA) is used to solve the optimization problem, because of its robustness and simplicity.

This paper is organized as follows: Section 2 is devoted to the kinematic analysis of the DELTA robot and
the determination of its workspace. In Section 3, we carry out the formulation of the optimization problem
using the genetic algorithm technique. Section 4 deals with the implementation of the proposed method fol-
lowed by the obtained results. Finally, Section 5 contains some conclusions.

2. Kinematic analysis and workspace of the DELTA robot
2.1. Direct and inverse geometric analysis

The DELTA robot consists of a moving platform connected to a fixed base through three parallel kine-
matic chains. Each chain contains a rotational joint activated by actuators in the base platform. The motion
is transmitted to the mobile platform through parallelograms formed by links and spherical joints (see Fig. 1).

We assume that all the three legs of the DELTA robot are identical in length. The geometric parameters of
the DELTA robot are L, Lo, 14, rp, 0; (j = 1,2,3) as defined in Fig. 1, as well as ¢y;, @2, @3; (j = 1,2,3), the
joint angles defining the configuration of each leg.

Let P be a point located on the moving platform, then the geometric model can be written as

Xp =cos0;(ry + Ly cos @, + Ly cos @3, cos(@y; + ¢y;) — rp) — Ly sin 0, sin ¢5; (1)
Yp =sin0;(ry + Ly cos @;; + Ly cos @3,c08(@y,; + ¢y;) — rp) + Ly cos 0 sin @5, (2)
Zp = Lysin @; + L; cos @3, sin(@y; + ¢,;) (3)
with j = 1,2, 3 and where [Xp, Yp, Zp] are the coordinates of the point P in the fixed reference frame ()? , Y, 7)
as shown in Fig. 1.
In order to eliminate the passive joint variables, we square and add these equations
[(r + Lycos ¢;) cos O; — Xp]” + [(r + Ly cos ®y;)sin0; — Yo" + [~Lysin 01— Z)—12=0 (4)

where j=1,2,3 and r=ry  — rp.

2.1.1. The direct geometric model
The direct problem is defined by (4), where the unknowns are the location of the point P =[X),, Y, Z,] to be
determined for given joint angles @y, @25, @3 (j=1,2,3).
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