FISEVIER

Contents lists available at SciVerse ScienceDirect

Journal of Alloys and Compounds

journal homepage: www.elsevier.com/locate/jalcom

Facile synthesis of sulfur doped Sb₂Se₃ nanosheets with enhanced electrochemical performance

Rencheng Jin ^{a,*}, Ziqi Liu ^b, Lixia Yang ^a, Junshen Liu ^a, Yanbin Xu ^a, Guihua Li ^a

- ^a School of Chemistry & Materials Science, Ludong University, Yantai 264025, PR China
- ^b School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China

ARTICLE INFO

Article history:
Received 26 April 2013
Received in revised form 26 May 2013
Accepted 11 June 2013
Available online 20 June 2013

Keywords: Antimony triselenide Nanosheets Anisotropic growth Electrochemical performances

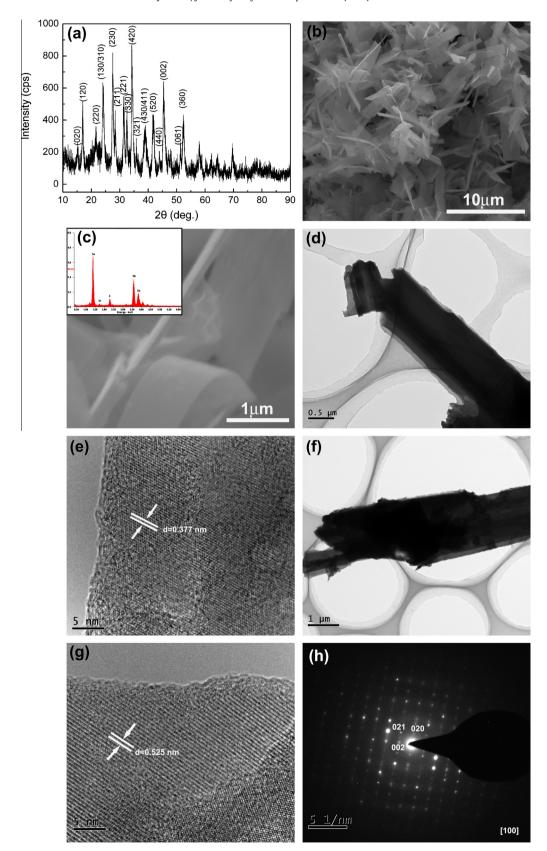
ABSTRACT

In this work, ultrathin Sb_2Se_3 nanowires as well as the sulfur doped nanosheets are synthesized by a facile solvothermal method through changing the volume of thioglycollic acid. The growth process of the nanoarchitectures and the effects of reaction parameters are investigated systematically by X-ray powder diffraction (XRD), field emission scanning electron microscopy (FESEM) and transmission electron microscope (TEM). Based on the experimental results, the formation mechanism of the Sb_2Se_3 nanosheets is proposed as a thioglycollic acid directed anisotropic growth process combined with an Ostwald ripening mechanism. Moreover, the electrochemical properties of the products are measured, the sulfur doped Sb_2Se_3 nanosheets show the superior performance and better stability than those of ultrathin Sb_2Se_3 nanowires.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Inorganic nanocrystals with different morphologies and desired compositions have attracted immense attention due to their morphology- and composition-dependent properties and their potential application in many fields including photocatalysis [1,2], lithium ion batteries [3,4], as well as the electronic and magnetic devices, etc. [5]. Therefore, different morphological materials such as zero dimensional (0D) quantum dots [6,7], 1D nanowires, [8,9] nanorods and nanotubes [10–12], 2D nanosheets and nanoplates [13,14], and, of course, 3D crystalline objects are fabricated [15–17].


Among these morphologies, dimensionality two has drawn much interest because of the new discoveries on their unique optical, electronic, catalytic and mechanical properties. And various methods have been developed for the fabrication of 2D nanocrystals. For example, TiS₂ and SnS with well-defined layered 2D shapes have been prepared through hot injection method [18,19]. SnS and Sb₂Te₃ nanoplates have been fabricated by one-pot heating-up method [20,21]. Bi₂Te₃ and PbTe nanoplates by using hydrothermal method have been well-reported [22,23].

Antimony triselenide, a kind of direct bandgap semiconductor, has been attracted a great deal of attention due to its application in solar selective and decorative coating [24], thermoelectric cooling devices [25], and electrochemical hydrogen storage and lithium ion battery devices [26,27]. In the past decades, inspired by its

excellent characteristics, considerable efforts have been devoted to the fabrication of Sb₂Se₃ micro and nanostructures. For instance, 1D Sb₂Se₃ nanowires [27,28], nanorods [29] and nanobelts/nanoribbons [30-32] have been prepared via hydrothermal/solvothermal method and a template directed solution process. Sb₂Se₃ microcrystals with sheaf-like, [33] polygonal tubular, [34] tetragonal tubular, [35] spherical-like, [35] submicron rods like, [36] morphologies have been fabricated through a solvent-relief-selfseeding (SRSS) process, a microwave-assisted procedure and a hydrothermal method with the assistance of poly(vinyl pyrrolidone) (PVP). 3D hierarchical urchin-like [30] and carpenterwormlike Sb₂Se₃ [16] have been synthesized by a solvothermal route with the assistance of citric acid and glucose. However, to the best of our knowledge, less work has focused on a one-pot synthesis of Sb₂Se₃ 2D nanostructures. To develop a facile route to controllable synthesis of Sb₂Se₃ 2D nanostructures and investigate their formation mechanism still remains a great challenge.

Herein, we report a facile solvothermal method for the fabrication of 2D Sb₂Se₃ nanosheets. The morphology of Sb₂Se₃ can be tuned by varying the amount of thioglycollic acid and reaction time. Meanwhile, thioglycollic acid can be used as sulfur source in the reaction system, leading to the formation of sulfur doped Sb₂Se₃ nanosheets. Based on the electron microscopy observations, the morphology evolution and the growth mechanism are investigated systematically. Furthermore, the electrochemical hydrogen storage and the electrochemical Li intercalation performance are tested. The sulfur doped Sb₂Se₃ nanosheets demonstrate comparatively high capacity and excellent cycle performance than those of ultrathin Sb₂Se₃ nanowires.

^{*} Corresponding author. Tel./fax: +86 535 6696162. E-mail address: jinrc427@126.com (R. Jin).

Fig. 1. Characterization of Sb₂Se₃ nanosheets obtained at 120 °C for 9 h in the presence of 1 mL thioglycollic acid: (a) typical XRD pattern, (b) low magnification FESEM image, (c) high magnification FESEM image, inset: EDS pattern, (d) TEM image, (e) HRTEM image, (g) HRTEM image, (h) corresponding SAED pattern of a single Sb₂Se₃ nanosheet.

Download English Version:

https://daneshyari.com/en/article/8002428

Download Persian Version:

https://daneshyari.com/article/8002428

<u>Daneshyari.com</u>