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a b s t r a c t

The goal of this paper is to characterize the mechanical behavior of porous materials by
taking into account the void shape and micro-inertia effects. A representative volume ele-
ment (RVE) defined by two confocal prolate spheroids is used to describe the porous mate-
rial. The matrix behavior is assumed to be rigid and non linear viscous. Based on the work
of Molinari and Mercier (2001), the macroscopic stress is decomposed into static and
dynamic parts. In the present work the static contribution is described by the Gologanu
et al. model (1993). The dynamic stress is obtained by choosing the trial velocity field pro-
posed by Gologanu et al. (1993). With the proposed modeling a link is established between
the macroscopic dynamic stress, on the one hand and, on the other hand, the macroscopic
strain rate tensor and its time derivative. To validate our model, finite element simulations
have been performed. Two shapes of void (spherical and prolate with an aspect ratio of 5)
and two volume fraction of voids (0.001 or 0.1) are considered. The influence of micro-iner-
tia on the macroscopic flow stress surface is analyzed and it is shown that the flow surface
obtained by the analytical approach is in good agreement with finite element
computations.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

This work presents a multiscale model for porous duc-
tile materials containing prolate spheroidal voids and sub-
jected to dynamic loading. Fracture in ductile materials is
in general considered to be a three stage process involving
void nucleation, growth and coalescence. Owing to its cru-
cial importance for industrial applications and hazard pre-
dictions of metallic structures, this fracture process has
been widely studied in the literature throughout the last
decades (readers may refer to the recent review of Benze-
rga and Leblond (2010) for a detailed description of the
mechanisms of ductile fracture and associated models).

In quasi static conditions, among the first models refer-
ring to void growth, one has to mention Mc Clintock (1968)
for cylindrical voids and Rice and Tracey (1969) for spher-
ical voids. These authors were able to derive the evolution
of void radius assuming that a void was embedded in an
infinite matrix. One of the outcomes of the Rice and Tracey
(1969) contribution is the proposition of an admissible
velocity field to describe void growth. This kinematic field
was further used by Gurson (1977) in the derivation of a
constitutive model for porous materials. He considered a
representative volume element containing a void (spheri-
cal or cylindrical) embedded in a finite matrix. The matrix
behavior was assumed to be rigid perfectly plastic. Based
on a limit analysis, Gurson obtained a macroscopic yield
criterion for the voided solid. The Gurson model and its
extensions are nowadays widely used for analytical model-
ing or finite element computations. The analysis was
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restricted to spherical or cylindrical voids neglecting void
shape changes during deformation. The aspect of void
shape evolution was investigated by Budiansky et al.
(1982) who analyzed the effect of the stress state on the
evolution of the shape of a single void in an infinite matrix.
It was shown that, depending on stress triaxiality, an ini-
tially spherical void can evolve toward different limit
shapes (from needle to penny-shape). Since the void shape
is known to be a key factor to precisely define the behavior
of porous materials, many studies have analyzed how the
mechanical behavior of porous medium is affected by void
shape. For that purpose, homogenization based methods
are convenient. Firstly, a representative volume element
(RVE) has to be defined. Generally, the RVE associated to
a porous material is taken to be a hollow sphere (as in
the Gurson model) or its ellipsoidal/spheroidal counter-
parts. Secondly, the choice of a salient trial velocity field
is an important issue. Usually, there is no exact analytical
solution for the velocity field around a void of complex
shape under general kinematic boundary loading. Many
contributions have been recently proposed to define
admissible velocity fields for specific void geometries.
One can refer to Lee and Mear (1992), Monchiet et al.
(2007, 2008, 2014), Monchiet and Kondo (2013), Gărăjeu
et al. (2000) or Gologanu et al. (1993, 1994, 1997) when
spheroidal voids are considered. Recently, Leblond and
Gologanu (2008) have proposed a velocity field valid for
arbitrary ellipsoids subjected to homogeneous strain rate
boundary conditions. This velocity field has been adopted
by Madou and Leblond (2012) to derive the behavior of
porous materials containing arbitrary ellipsoidal voids. In
the present paper we will concentrate on a porous medium
containing prolate spheroidal voids, subjected to axisym-

metric loadings. For this kind of void geometry, many
velocity fields are available in the literature, as seen above.
The Gologanu et al. (1993) velocity field is adopted here.
The methodology proposed in the paper is nevertheless
versatile so that any other admissible fields of the litera-
ture could have been used instead.

In some applications (impact, perforation), ductile frac-
ture occurs when the material is subjected to dynamic con-
ditions. In addition, even for quasi-static loading, in the
vicinity of the crack tip, dynamic loading may be experi-
enced by the material during fracture. In these particular
cases, it has been shown that taking account of the dy-
namic effects at the microstructural level is a fundamental
issue. These effects are particularly significant for large
strain rate, typically ranging from 104 s�1 to 106 s�1. Dy-
namic effects at the microstructural level (named in the
following as micro-inertia effects) originate from the local
acceleration of the dense matrix in the vicinity of voids. In
fluid mechanics, the effect of local acceleration in bubble
cavitation is well established since the pionneer works of
Rayleigh (1917) and Plesset (1949). In solid mechanics,
one may refer to Carroll and Holt (1972) who considered
the dynamic compaction of powder. This paper is one of
the first contribution in solid mechanics showing that mi-
cro-inertia has to be integrated in the modeling of large
strain rate processes. The contribution of Carroll and Holt
(1972) was restricted to spherical loading, as it was the
case for Ortiz and Molinari (1992). Molinari and Mercier
(2001) proposed an analytical expression of the dynamic
stress contribution due to micro-inertia in a general case.
One may also refer to Wang (1997) for a different defini-
tion of the dynamic stress contribution. To validate the
concept of micro-inertia in solid mechanics, the spallation
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Fig. 1. RVE configuration: (a) A prolate spheroid with semi axes a1 and b1 is embedded into a confocal prolate spheroid with semi axes a2 and b2. The
dotted-dashed line corresponds to the trace of any inner confocal spheroid of semi axes a and b. (b) Homogeneous strain rate boundary conditions are
applied at the external boundary of the RVE.
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