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a b s t r a c t

This paper presents phononic band-structure calculation results obtained using a mixed
variational formulation for 1-, and 2-dimensional unit cells. The formulation itself is pre-
sented in a form which is equally applicable to 3-dimensiomal cases. It has been estab-
lished that the mixed-variational formulation presented in this paper shows faster
convergence with considerably greater accuracy than variational principles based purely
on the displacement field, especially for problems involving unit cells with discontinuous
constituent properties. However, the application of this formulation has been limited to
fairly simple unit cells. In this paper we have extended the scope of the formulation by
employing numerical integration techniques making it applicable for the evaluation of
the phononic band-structure of unit cells displaying arbitrary complexity in their Bravais
structure and in the shape, size, number, and anisotropicity of their micro-constituents.
The approach is demonstrated through specific examples.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

There has been a recent surge of research effort towards
achieving exotic dynamic response through novel micro-
structural design of composites. Within mechanics and
elastodynamics these responses can be categorized in
two broad areas: phononics and metamaterials. Phononics
is the study of stress wave propagation in periodic elastic
composites, whereas, metamaterials builds upon the area
of phononics with dynamic homogenization schemes and
seeks to create periodic composites with overall dynamic
properties that are not shared by common materials. The
required first step to attain this is to evaluate the phononic
band-structure of periodic composites.

The phononic band-structure (Martinezsala et al., 1995)
results from the periodic modulation of stress waves, and

as such has deep similarities with areas like electronic
band theory (Bloch, 1928) and photonics (Ho et al.,
1990). Such periodic modulations provide for very rich
wave-physics and the potential for novel applications
(Cervera et al., 2001; Yang et al., 2002; Khelif et al., 2003;
Reed et al., 2003; Yang et al., 2004; Gorishnyy et al.,
2005; Mohammadi et al., 2008; Sukhovich et al., 2008;
Lin et al., 2009). These applications depend upon the ability
of calculating the required phononic band-structure. In
addition to the ability of calculating phononic band-struc-
tures, certain research areas such as phononic band-struc-
ture optimization (Sigmund and Jensen, 2003; Rupp et al.,
2007; Bilal and Hussein, 2011; Diaz et al., 2005; Halkjær
et al., 2006) and inverse problems in dynamic homogeniza-
tion, also demand that the band-structure calculating algo-
rithm possess speed, efficiency, accuracy, and versatility.
There exist several techniques by which band-structures
of photonic and phononic composites can be computed.
These include the plane wave expansion (PWE) method
(Ho et al., 1990; Leung and Liu, 1990; Zhang and
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Satpathy, 1990), the multiple scattering method (Kafesaki
and Economou, 1999), the finite difference time domain
method (Chan et al., 1995), the finite element method
(White et al., 1989), variational methods (Goffaux and
Sánchez-Dehesa, 2003) and more (see Hussein, 2009).

In this paper we elaborate upon a mixed variational for-
mulation for phononic band-structure calculations which
is based upon varying both the displacement and the stress
fields (Nemat-Nasser, 1972; Nemat-Nasser et al., 1975;
Minagawa and Nemat-Nasser, 1976; Nemat-Nasser et al.,
2011). Since it is based on a variational principle, any set
of approximating functions can be used for calculations,
e.g., plane-waves Fourier series or finite elements
(Minagawa et al., 1981). The mixe formulation yields very
accurate results and the rate of convergence of the corre-
sponding approximating series solution is greater than that
of the Rayleigh quotient with displacement-based approx-
imating functions (Babuska and Osborn, 1978). Although
the mixed-formulation shows a fast convergence, it has
not yet been used to evaluate the band-structures of com-
plex 2-, and 3-dimensional unit cells. In this paper we
extend the scope of the formulation by employing numer-
ical integrations and describe clearly how it can be applied
to 1-, 2-, and 3-dimensional unit cells of arbitrary complex-
ity in their Bravais structure and in the shape, size, num-
ber, and anisotropicity of their micro-constituents. We
present 1-, and 2-dimensional test cases which verify the
results of the formulation with published results in litera-
ture (exact solution for 1-dimensional and plane wave
approximation for 2-dimensional). For the 2-phase 2-
dimensional case we note that acceptable convergence
over the first 18 phononic branches is achieved when the
displacement and stress fields are approximated by 121
Fourier terms each.

2. Statement of the problem

In the following treatment repeated Latin indices mean
summation, whereas, repeated Greek indices do not. Con-
sider the problem of elastic wave propagation in a general
3-dimensional periodic composite. The unit cell of the peri-
odic composite is denoted by X and is characterized by 3
base vectors hi, i ¼ 1;2;3. Any point within the unit cell
can be uniquely specified by the vector x ¼ Hih

i where
0 6 Hi 6 1; i ¼ 1;2;3. The same point can also be specified
in the orthogonal basis as x ¼ xiei. The reciprocal base vec-
tors of the unit cell are given by,

q1 ¼ 2p h2 � h3

h1 � ðh2 � h3Þ
; q2 ¼ 2p h3 � h1

h2 � ðh3 � h1Þ
; q3

¼ 2p h1 � h2

h3 � ðh1 � h2Þ
ð1Þ

such that qi � hj ¼ 2pdij, where the denominators of the
above vectors are the volume of the unit cell. Fig. 1 is the
schematic of a 2-dimensional unit cell, indicating the unit
cell basis vectors, the reciprocal basis vectors and the
orthogonal basis vectors.

The wave vector for a Bloch-wave traveling in the com-
posite are given as k ¼ Qiqi where 0 6 Q i 6 1, i ¼ 1;2;3.

The composite is characterized by a spatially varying stiff-
ness tensor, CjkmnðxÞ, and density, qðxÞ, which satisfy the
following periodicity conditions:

Cjkmnðxþ nih
iÞ ¼ CjkmnðxÞ; qðxþ nih

iÞ ¼ qðxÞ; ð2Þ

where niði ¼ 1;2;3Þ are integers.

2.1. Field equations and boundary conditions

For harmonic elastodynamic problems the equations of
motion and kinematic relations at any point x in X are
given by

rjk;k ¼ �kquj; ejk ¼
1
2
ðuj;k þ uk;jÞ; ð3Þ

where k ¼ x2, and re�ixt , ee�ixt , and ue�ixt are the space
and time dependent stress tensor, strain tensor, and dis-
placement vector, respectively. The stress tensor is related
to the strain tensor through the elasticity tensor,
rjk ¼ Cjkmnemn. The traction and displacement at any point
in the composite are related to the corresponding traction
and displacement at another point, separated from the first
by a unit cell, through Bloch relations. These relations
serve as the homogeneous boundary conditions on @X. If
the Bloch wave vector is k then these boundary conditions
are given by,

ujðxþ hiÞ ¼ ujðxÞeik�hi
; tjðxþ hiÞ ¼ �tjðxÞeik�hi

; x 2 @X;
ð4Þ

where tj ¼ rjkmk are the components of the traction vector
and m is the exterior unit normal vector on @X.

2.2. Mixed-variational formulation

It has been shown (Nemat-Nasser et al., 1975;
Minagawa and Nemat-Nasser, 1976) that the solution to
(3) that satisfies the boundary conditions, (4), renders the
following functional stationary:

kN ¼
hrjk;uj;ki þ huj;k;rjki þ hDjkmnrjk;rmni

hquj;uji
; ð5Þ

where D is the compliance tensor and the inner product is
given by,

hu;vi ¼
Z

X
uv�dX; ð6Þ

where v� is the complex conjugate of v.

2.3. Approximation with periodic test functions

Now we approximate the stress and displacement fields
with the following test functions:

�uj ¼
X
a;b;c

Uabc
j f abcðxÞ; �rjk ¼

X
a;b;c

Sabc
jk f abcðxÞ; ð7Þ

where the test functions satisfy the boundary conditions,
(4), and are orthogonal in the sense that hf abc; f hgni is pro-
portional to dahdbgdcn, d being the Kronecker delta. Substi-
tuting from (7) to (5) and setting the derivative of kN

with respect to the unknown coefficients, (Uabc
j ; Sabc

jk ), equal
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