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a b s t r a c t

Several versions of the effective field method of finding the overall elastic properties of
matrix composites are examined and compared. We focus on difficulties and uncertainties
encountered by these methods, in particular in cases of anisotropic multiphase composites.
It is demonstrated that the schemes are best formulated in terms of the compliance/stiff-
ness contributions tensors: such formulation exposes roots of various inconsistencies, and
clarifies relations between different versions of the method. Particular attention is paid to
Maxwell’s scheme which is shown to represent yet another version of the effective field
method. The discussion can be extended to physical properties other than the elastic ones.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

We address some controversial issues related to
homogenization of matrix composites, particularly the
multiphase ones (containing mixtures of inhomogeneities
of diverse shapes and properties). The simplest approach
to the problem is the non-interaction approximation
(NIA) whereby the inhomogeneities are treated as isolated
ones placed in the externally applied field unperturbed by
neighbors. At concentrations when interactions cannot be
neglected, several approximate models have been pro-
posed that can be classified as ‘‘one-particle’’ approxima-
tions: the interaction effect is simulated by placing
inhomogeneities – treated as isolated ones – into certain
‘‘effective’’ environment. The latter can be chosen in one
of two ways: either as effective matrix (possessing the yet
unknown effective properties), or as effective field (stress
or strain) that differs from the remotely applied one. For
reviews, see, for example, Hashin (1983) and Markov
(2000).

Various variants of the effective media approximation
has been discussed in detail in the book of Milton (2002)
and more recent papers of Benveniste and Milton (2010a,
2010b, 2011). In particular, they shown that the effective
media scheme, being realizable, will always obey the Ha-
shin–Shtrikman bounds, and that the effective field ap-
proaches may violate those bounds. We consider
effective media approaches as well discussed in the litera-
ture and do not creating any controversial issues. The pres-
ent paper focuses on the effective field models that are
more physically grounded since they have direct interpre-
tation in terms of stress superpositions whereby the effect
of neighbors on a given inhomogeneity is expressed in
terms of the field generated by the former at the site of
the latter; the mentioned models make various simplifying
assumptions on this field.

The simplest variant of the effective field method was
proposed by Mori and Tanaka (1973); it became popular
after Benveniste (1987) illustrated its use and clarified
the underlying physical hypothesis. It takes the effective
field acting on each inhomogeneity as the field average
over the matrix. Then the effective properties can be
obtained from the NIA results by replacing the remotely
applied field by the matrix average one. The Kanaun–
Levin’s scheme (see Kanaun (1977), Levin (1976) and the

0167-6636/$ - see front matter � 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.mechmat.2013.09.010

⇑ Corresponding author. Tel.: +1 575 646 3322; fax: +1 575 646 6111.
E-mail addresses: igor@nmsu.edu (I. Sevostianov), mark.kachanov@

tufts.edu (M. Kachanov).

Mechanics of Materials 69 (2014) 93–105

Contents lists available at ScienceDirect

Mechanics of Materials

journal homepage: www.elsevier .com/locate /mechmat

http://crossmark.crossref.org/dialog/?doi=10.1016/j.mechmat.2013.09.010&domain=pdf
http://dx.doi.org/10.1016/j.mechmat.2013.09.010
mailto:igor@nmsu.edu
mailto:mark.kachanov@tufts.edu
mailto:mark.kachanov@tufts.edu
http://dx.doi.org/10.1016/j.mechmat.2013.09.010
http://www.sciencedirect.com/science/journal/01676636
http://www.elsevier.com/locate/mechmat


book of Kanaun and Levin (2008)) represents a refinement
of Mori–Tanaka’s scheme that is capable of accounting for
finer details of microstructure, such as spatial statistics of
centers of inhomogeneities.

Special place belongs to the Maxwell’s (1873) model. It
considers certain domain X containing a sufficient number
of inhomogeneities (so that it can be treated as a represen-
tative volume element, RVE), and focuses on the far-field
perturbation of the remotely applied field produced by this
domain. This perturbation is calculated in two ways: (1) as
a sum of far-field perturbations due to individual inhomo-
geneities treated as non-interacting ones, and (2) as gener-
ated by a homogenized domain X possessing the effective
properties. Equating the results yields the effective
constants.

Recently, Maxwell’s scheme, originally developed for
electrical conductivity of a matrix containing spherical
inhomogeneities, has been extended to the elastic proper-
ties of a material containing either randomly oriented
(McCartney and Kelly, 2008) or parallel (McCartney,
2010) ellipsoidal inhomogeneities of identical aspect ra-
tios. Levin et al. (2012) applied it to the elastic, electric
and poroelastic properties of a composite containing sev-
eral families of ellipsoidal inhomogeneities, with aspect ra-
tios identical within each family. We show, in the text to
follow, that Maxwell’s model actually represents a variant
of the effective field method, as clarified by rewriting it in
the form proposed by Sevostianov and Giraud (2013).

The effective field methods have their shortcomings.
Predictions of the Maxwell’s scheme depend on the shape
of the homogenized domain X, and this dependence may
be quite strong in anisotropic cases; at the same time, no
clear guidance has been given on the choice of the shape.
The Mori–Tanaka’s scheme, being applied to multiphase
composites, may violate the Hashin–Shtrikman bounds
and, also, yield non-symmetric effective stiffnesses in cer-
tain cases of overall anisotropy (as well as other inconsis-
tencies). To avoid the non-symmetry, Kanaun–Levin’s
scheme places inhomogeneities of different shapes or
properties into different effective fields (this may not be
easily reconciled with the principle of stress
superpositions).

The present work clarifies these issues using the con-
cept of property contribution tensors of inhomogeneities
(see Kachanov and Sevostianov, 2005 for detail). The dis-
cussed issues are particularly relevant for mixtures of
inhomogeneities of diverse shapes or properties.

2. Property contribution tensors and concentration
parameters

The property contribution tensor of an inhomogeneity –
that characterizes its contribution to the overall properties
– is of the central interest here: summation over them gives
the change in the effective properties due to the presence of
inhomogeneities. They also clarify the issue of the proper
concentration parameters in whose terms the effective
property is to be expressed. This issue – and the very possi-
bility to introduce concentrations parameters – is non-
trivial: whereas in the simplest case of inhomogeneities

of identical shapes the concentration parameter is the vol-
ume fraction, it is much less clear in practically important
cases of mixtures of diverse shapes, as well as cases of orien-
tation distributions more complex than fully random or
perfectly parallel ones. In the context of the elastic proper-
ties, the property contribution of an inhomogeneity is given
by its compliance- or stiffness contribution tensor.

The inhomogeneity contribution depends on the physi-
cal constants of the matrix and the inhomogeneity, and on
the shape and orientation of the latter. It is also affected by
interactions with neighbors; however, accounting for this
factor amounts to solving the interaction problem; hence
these tensors are defined in the framework of the NIA
(that, strictly speaking, makes their use beyond the NIA
not perfectly logical although this is routinely done in
approximate schemes). Summing up these tensors over
the inhomogeneities contained in a RVE yields the proper
concentration parameter (that represents inhomogeneities
according to their actual contributions to the physical
property considered). Note that such parameters do not
generally reduce to volume fractions.

The present work focuses on the linear elastic proper-
ties. We consider certain reference volume V containing
an inhomogeneity. We represent, as usual, the strain per
volume V as a sum

e ¼ S0 : r1 þ De ð2:1Þ

where S0 is the compliance tensor of the matrix and r1 is
the ‘‘remotely applied’’ stress (more precisely, the constant
stress corresponding to homogeneous boundary conditions
in tractions, ti ¼ r1ij xj). The extra strain, per V, due to an
inhomogeneity of volume V1 is a linear function of the ap-
plied stress:

De ¼ V1

V
H : r1 ð2:2Þ

where the fourth-rank tensor H is the compliance contri-
bution tensor of the inhomogeneity per its unit volume.
It depends on the elastic constants of the matrix and the
inhomogeneity and the shape of the latter. It possesses
the usual symmetries of the compliance tensor (Hijkl =
Hjikl = Hijlk = Hklij). For multiple inhomogeneities – with
interactions between them neglected – the extra strain
due to their presence is a sum

De ¼ 1
V

X
VkHðkÞ : r1 ð2:3Þ

so that the extra compliance, calculated in the NIA is given
by

DS ¼ 1
V

X
VkHðkÞ ð2:4Þ

This solves the problem in the NIA provided the H-tensors
of inhomogeneities – treated as isolated ones – are known.
This explains the fundamental role of H-tensors: for multi-
ple inhomogeneities, it is them that have to be summed up.

The effective field models have the form of (2.3) with
remotely applied field r1 replaced by certain effective
field reff. In other words, in the effective field models, the
problem reduces to finding a fourth-rank tensor M that re-
lates the two fields:
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