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a b s t r a c t

An auxetic material is one with a negative Poisson’s ratio and has the property of widening
when stretched or narrowing when compressed in contrast to conventional materials. Typ-
ical auxetic materials include modified polymeric foams (Lakes, 1987), regular honey-
combs, polypropylene fibres and certain crystal structures. Auxetic materials benefit
from enhanced mechanical properties. These benefits include improved indentation resis-
tance, enhanced shear moduli and fracture toughness Evans and Alderson (2000).

While modelling granular materials, Bathurst and Rothenburg (1988a,b) noted the theo-
retical possibility of a negative Poisson’s ratio if the constitutive grains had unconventional
interactive properties. These unconventional interactive properties are that the tangential
interaction should be stiffer than the normal interaction. In this work, a 2D unit cell has
been designed with just such an unconventional interaction so that a 2D granular material
can be constructed with negative Poisson’s ratio. Theoretical calculations of such a granular
assembly are made using mean strain assumptions and first order heterogeneity calcula-
tions. These are compared to 2D discrete element simulations, finite element simulations
and Bathurst and Rothenburg’s original result.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Auxetic foams were first manufactured in 1987 and
quickly became of interest to the science community. The
interest was due to the fact that it was the first example
of a manufactured material with a negative Poisson’s ratio:
a material that expands laterally when stretch longitudi-
nally. A negative Poisson’s ratio imparts to a material many
proven and postulated benefits: enhanced fracture tough-
ness (Lakes, 1987), indentation resistance (Alderson and
Evans, 1994), acoustic response (Lipsett and Beltzer,
1988), dynamic tuning of electro-magnetic permittivity
(Smith et al., 2000) and variable porosity (Rasburn et al.,
2001).

Since then much work has established a broad spec-
trum of auxetic materials, yet little progress has been
made in starting large scale use and manufacture. This is
partly because of the difficulty in making reliable and

predictable auxetic materials. Notably the novel properties
of many auxetic materials, in particular polymeric foams,
comes from a complicated, non-trivial, 3D structure within
the fabric of the material (microstructure). Understanding
this microstructure, how it behaves under use and how it
is formed in the manufacture are key to auxetic materials
moving from research laboratories to industrial and com-
mercial environments.

There are broadly three mechanisms for generating a
negative Poisson’s ratio.

(i) A microstructure that contains unfolding (beam or
plate) elements. Lakes (1991) first suggested this
as a regular array such as the honeycombs in
Fig. 1. You can also have a disordered array as shown
in the micrograph of an auxetic foam in Fig. 2.

(ii) A microstructure of contacting elements with the
special condition that the tangential interaction
should be stiffer than the normal interaction; the
Bathurst and Rothenburg result.
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(iii) A heterogeneous media with a wide spread of elastic
properties. Results for this are either based on an
elastic continuum (Gaspar et al., 2003) or on a mate-
rial with microstructure (Koenders, 2005).

The first two mechanisms can be considered to be the
dual of each other. This work is concerned with the practi-
cal realisation of a material with a negative Poisson’s ratio
via the second mechanism.

2. Isotropic, homogeneous material

Bathurst and Rothenburg formulate the incremental re-
sponse of an assembly of elastic spheres from an isotropic
distribution of contacts around a particle. At the heart is a
linear elastic model for the contact between two spheres:

fn ¼ kndn; ð1Þ
ft ¼ ktdt ; ð2Þ

where f� is the force between two contacting spheres due
to relative displacement d� of their centres. The parameters
kn and kt are then the normal and tangential linear elastic
constants and the interaction ratio k, is defined by k = kt/
kn. Jenkins and Koenders (2004) follow a similar process
that encompasses Bathurst and Rothenburg’s results. Using
their notation, the incremental response between stress,
rpk, and mean strain, ast, of a homogeneous assembly of
spherical particles is:

rpk ¼ Zpkstast; ð3Þ

Zpkst ¼
1

2v Apstk � enqreij‘Apijk Bð Þ�1
‘n Arstq

� �
; ð4Þ

Bpk ¼ epqreijlArijq; ð5Þ

Arijq ¼ D2
X

neighbours

knnrni þ kttrti

� �
njnq: ð6Þ

Variables are defined in Table 1.
The first term on the right hand side of Eq. (4) is Bath-

urst and Rothenburg’s result. The second term on the right
hand side incorporates rotation of the spheres. The tensor
Z is therefore an estimate of the incremental elastic moduli
of the assembly of spheres. From these calculations,
neglecting the rotation term, the Poisson’s ratio of such
an assembly in 2D and 3D, respectively is:

m ¼ 1� k
3þ k

; ð7Þ

m ¼ 1� k
4þ k

; ð8Þ

which is plotted in Fig. 3. This clearly demonstrates a pre-
diction of a negative Poisson’s ratio when k increases above
unity. In 2D, Koenders (2005) examines the relationship
between the interaction ratio k and the relative angles be-
tween contacting spheres. He finds that there are no possi-
ble isotropic assemblies where k > 1. The contradiction to
Bathurst and Rothenburg’s result is entirely due to incor-
porating the rotation term in the local equilibrium
equations.

Since we no longer have isotropy an internal angle w is
introduced to distinguish possible orientations. The Pois-
son’s ratio as a function of w is then

mðwÞ ¼ ð1� kÞ sin2ð2wÞ
4 cos4ðwÞ þ k sin2ð2wÞ

: ð9Þ

The Poisson’s ratio for values of w are plotted in Fig. 4.

Fig. 1. A chiral honeycomb that exhibits a negative Poisson’s ratio.

Fig. 2. Micrograph of an auxetic foam (Smith et al., 2000).

Table 1
List of variables.

D Diameter of spheres
fn, ft Normal and tangential forces between spheres
G Shear modulus of sphere material
kn, kt Normal and tangential elastic interactions
n Unit normal vector between sphere centres
N Mean number of contacts per sphere
t Unit vector tangential to contact between spheres
v Volume of assembly of spheres
aij Mean bulk scale strain increment
eijk The permutation tensor
m Poisson’s ratio of bulk assembly of spheres
mG Poisson’s ratio of sphere material
rij Bulk scale stress increment
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