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a b s t r a c t 

A multi-scale model, based on the concept of Representative Volume Element (RVE), is proposed linking 

a classical continuum at RVE level to a macro-scale strain-gradient theory. The multi-scale model ac- 

counts for the effect of body forces and inertia phenomena occurring at the micro-scale. The Method of 

Multiscale Virtual Power recently proposed by the authors drives the construction of the model. In this 

context, the coupling between the macro- and micro-scale kinematical descriptors is defined by means of 

kinematical insertion and homogenisation operators, carefully postulated to ensure kinematical conserva- 

tion in the scale transition. Micro-scale equilibrium equations as well as formulae for the homogenised 

(macro-scale) force- and stress-like quantities are naturally derived from the Principle of Multiscale Vir- 

tual Power – a variational extension of the Hill-Mandel Principle that enforces the balance of the virtual 

powers of both scales. As an additional contribution, further insight into the theory is gained with the 

enforcement of the RVE kinematical constraints by means of Lagrange multipliers. This approach unveils 

the reactive nature of homogenised force- and stress-like quantities and allows the characterisation of 

the homogenised stress-like quantities exclusively in terms of RVE boundary data in a straightforward 

manner. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

The development of second gradient theories has long been an 

active field of research aimed at the improvement of the predic- 

tive capabilities of mechanical models, beyond classical continuum 

mechanics. Such theories are developed through the enrichment 

of the kinematical description of continua which, in turn, yields a 

more complex structure of dual stress-like entities, requiring more 

complex constitutive models to describe the phenomenological be- 

havior of more complex materials. 

The literature in the field is vast and it is not the goal of the 

present work to discuss every aspect of the theory itself. The inter- 

ested reader can refer to de Borst and Mühlhaus (1992) ; de Borst 

et al. (1995) ; Mühlhaus and Aifantis (1991) ; Nguyen and Andrieux 

(2005) ; Nguyen (2010) ; Peerlings et al. (1996) ; Polizzotto et al. 
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(1997) ; Sunyk and Steinmann (2003) , which address various the- 

oretical and practical aspects of such formulations. 

In recent years, multi-scale theories have been evolving to deal 

with increasingly complex materials, by linking micro-continuum 

mechanisms with macro-continuum theories in a myriad of con- 

texts and applications. Particularly in the field of second gradient 

theories, the works by Kouznetsova et al. (20 02, 20 04) have pro- 

vided a first link between classical micro-scale mechanics and sec- 

ond gradient macro-scale mechanics by means of the concept of 

Representative Volume Element (RVE). Similar work was later re- 

ported by Larson et al. ( Larsson and Diebels, 2007; Larsson and 

Zhang, 2007 ), and also by Luscher et al. ( Luscher et al., 2010, 2012 ). 

The present contribution is placed in the context of these works. 

Despite such significant developments, there is still plenty of 

room to assess the real capabilities of muti-scale models, as well as 

to better understand the underlying fundamental model hypothe- 

ses and their associated consequences. Such an understanding can 

be achieved with the help of an appropriate variational framework. 

In fact, a suitable variational structure should allow a rational anal- 

ysis of the model by means of a purely kinematical approach. That 
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is, the definition of the kinematics at both (macro- and micro-) 

scales and the way in which they are coupled have a well-defined 

effect on the micro-scale (RVE) equilibrium problem, as well as on 

the homogenisation rules for the dual (force- and stress-like) quan- 

tities conjugated to the adopted kinematical descriptors. This issue 

deserves further discussions at present. For example, the kinemat- 

ical constraints for the micro-scale fluctuation fields proposed in 

Kouznetsova et al. (2002) differ from that of Luscher et al. (2010) . 

Therefore, a question naturally arises as to the possible equivalence 

and consistency of these boundary conditions. 

Our goal in this paper, and its major novelty, is to provide a ra- 

tional justification for and a rigorous derivation of the multi-scale 

formulation of a finite strain second-gradient macro-continuum 

mechanical theory arising from a classical first-order continuum 

theory at the micro-scale featuring body forces and inertia phe- 

nomena. In this context, the formulation is theoretically examined 

in detail and the consequences of the adopted kinematical assump- 

tions are fully explored in the light of the so-called Method of Mul- 

tiscale Virtual Power (MMVP) recently proposed by the authors in 

Blanco et al. (2016) . 

The MMVP can be seen as an extension, to multi-scale prob- 

lems, of the Method of Virtual Power developed in Germain (1973) , 

and provides a well-defined, structured framework to set the me- 

chanical foundations of the multi-scale model addressed in the 

present paper. The MMVP requires firstly the definition of the kine- 

matics of the macro- and micro-scales, as well as the way in which 

the two kinematics are linked. Then, through mathematical dual- 

ity arguments, it is possible to identify the force- and stress-like 

quantities dual to the kinematical descriptors at both scales. Sub- 

sequently, the Principle of Multiscale Virtual Power (PMVP) also pro- 

posed in Blanco et al. (2016) is used as a generalisation of the Hill- 

Mandel Principle ( Hill, 1965; Mandel, 1971 ) to provide the physical 

coupling between the two scales. As a variational extension of the 

classical Hill-Mandel principle, the PMVP postulates that the to- 

tal virtual powers produced by duality pairings at both scales are 

balanced. As described in Blanco et al. (2016) in a rather general 

context, and demonstrated here in the formulation of the present 

higher-order multi-scale formulation, the PMVP yields a complete 

characterisation of the model, comprising (i) the RVE equilibrium 

problem with consistent boundary conditions for the micro-scale 

fluctuation fields, and (ii) the homogenisation formulae for body 

force- and stress-like quantities dual to the macro-scale kinemat- 

ical descriptors. In addition, as a complementary novel aspect for 

the multi-scale analysis, an augmented Lagrange multiplier formu- 

lation of the PMVP allows a straightforward characterisation of the 

homogenised macro-scale generalised stresses which can be ex- 

pressed in terms RVE boundary data alone – in line with the idea 

postulated by Hill in his landmark work ( Hill, 1965 ). 

Fundamentally, the theoretical framework based on the MMVP 

employed in the present work yields a multi-scale model that in 

some aspects differs from, and in many cases generalises, those 

available in previous contributions, such as ( Kouznetsova et al., 

20 02, 20 04; Luscher et al., 2010, 2012 ). The specific differences 

between the present approach and the existing literature will be 

highlighted throughout the manuscript, and we should stress that 

the definition of the micro-scale kinematics in the present paper 

leads to different kinematical constraints for the micro-scale fluc- 

tuation fields. Since the RVE mechanical equilibrium is subordi- 

nated to these constraints, homogenisation of dual quantities will 

ultimately differ. These issues are essential for a deeper under- 

standing of the resulting multi-scale model and will be discussed 

in detail throughout the text. 

The paper is organised as follows. Section 2 presents fundamen- 

tal aspects of the methodology and basic ingredients of the multi- 

scale problem. The macro-scale second gradient mechanical model 

is reviewed in Section 3 . Kinematical relations coupling both scales 

are presented in Section 4 , and the corresponding Principle of Mul- 

tiscale Virtual Power is formulated in Section 5 . In Section 6 , the 

RVE equilibrium equations as well as the homogenisation formu- 

lae for the macro-scale force- and stress-like quantities are derived 

from the PMVP by means of straightforward variational arguments. 

A discussion on the reactive nature of such homogenised quanti- 

ties is also presented. Tangent operators for the present model are 

derived in Section 7 . The paper closes in Section 8 , where a dis- 

cussion on the model hypotheses and their corresponding conse- 

quences is presented together with some concluding remarks. 

2. Preliminaries 

2.1. Method of Multiscale Virtual Power (MMVP) 

In this work we employ the so-called Method of Multiscale Vir- 

tual Power (MMVP) proposed in Blanco et al. (2016) . The method 

relies on three fundamental principles: 

• Principle of kinematical admissibility : whereby the macro- and 

micro-kinematics are properly defined and the link between 

them is established by means of suitable assumptions concern- 

ing the procedures of kinematical insertion (i.e. how macro-scale 

kinematical quantities contribute to the micro-scale kinemat- 

ics) and kinematical homogenisation (i.e. how micro-scale kine- 

matical quantities are averaged in some sense to produce cor- 

responding macro-scale counterparts). 
• Mathematical duality : which allows a straightforward identi- 

fication of force- and stress-like quantities compatible with 

the theory as power-conjugates of the kinematical descriptors 

adopted in each scale. 
• The Principle of Multiscale Virtual Power (PMVP) : a variational 

generalisation of the Hill-Mandel Principle of Macrohomogene- 

ity, from which the micro-scale equilibrium problem, as well as 

the homogenisation formulae for macro-scale force- and stress- 

like quantities, can be univocally derived by means of straight- 

forward variational arguments. 

2.2. Notation 

The indices M and μ are used to denote quantities belonging 

to the macro- and micro-scale, respectively. Then, the macro- and 

micro-scale reference domains (open sets in R 

3 ) are denoted, re- 

spectively, �M 

and �μ, with corresponding boundaries ∂�M 

and 

∂�μ. Macro- and micro-scale reference coordinates are denoted 

x M 

and x μ. Let u M 

and u μ be the macro- and micro-scale dis- 

placement vector fields, respectively. The reference gradient opera- 

tors are denoted ∇ M 

in the macro-scale and ∇ μ in the micro-scale, 

with corresponding divergence operators div M 

and div μ. 

Second-order kinematics is adopted at the macro-scale. Hence, 

the kinematical descriptors that play a role in the characterisa- 

tion of the macro-scale problem are u M 

, ∇ M 

u M 

and ∇ M 

∇ M 

u M 

. 

Each point x M 

of the macro-scale is associated to a Representa- 

tive Volume Element (RVE) at the micro-scale. Within the micro- 

scale, only a first-order (classical) kinematics is considered. Hence, 

the kinematical descriptors of the micro-scale are simply u μ and 

∇ μu μ. 

Finally, a super-imposed hat ˆ (·) is used in variational equations 

to denote kinematically admissible virtual actions in both scales. 

Tensor algebra operations (some of them non-conventional) are 

used throughout the paper and are represented using intrinsic ten- 

sor notation. These are defined in Appendix A . 

Inertia effects will be considered throughout the manuscript, 

and 

¨(·) will be used to denote the second time derivative. It is im- 

portant to remark that the multi-scale analysis considers that the 

time-scale is the same for both spatial scales. In addition, and for 
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